Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2016

01-10-2016 | Review Article

Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting?

Authors: James C. Sorensen, Beatrice D. Cheregi, Cara A. Timpani, Kulmira Nurgali, Alan Hayes, Emma Rybalka

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2016

Login to get access

Abstract

Chemotherapy has been associated with increased mitochondrial reactive oxygen species production, mitochondrial dysfunction and skeletal muscle atrophy leading to severe patient clinical complications including skeletal muscle fatigue, insulin resistance and wasting. The exact mechanisms behind this skeletal muscle toxicity are largely unknown, and as such co-therapies to attenuate chemotherapy-induced side effects are lacking. Here, we review the current literature describing the clinical manifestations and molecular origins of chemotherapy-induced myopathy with a focus on the mitochondria as the target organelle via which chemotherapeutic agents establish toxicity. We explore the likely mechanisms through which myopathy is induced, using the anthracycline doxorubicin, and the platinum-based alkylating agent oxaliplatin, as examples. Finally, we recommend directions for future research and outline the potential significance of these proposed directions.
Literature
1.
go back to reference Steward B, Wild C (2014) World Cancer Report 2014. International Agency for Research on Cancer, Lyon Steward B, Wild C (2014) World Cancer Report 2014. International Agency for Research on Cancer, Lyon
2.
go back to reference de Gramont AD et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947PubMed de Gramont AD et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947PubMed
3.
go back to reference Ogston KN et al (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. The Breast 12(5):320–327PubMedCrossRef Ogston KN et al (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. The Breast 12(5):320–327PubMedCrossRef
4.
5.
go back to reference Gilliam LAA, St. Clair DK (2011) Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 15(9):2543–2563PubMedPubMedCentralCrossRef Gilliam LAA, St. Clair DK (2011) Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 15(9):2543–2563PubMedPubMedCentralCrossRef
6.
go back to reference Greene D et al (1993) A comparison of patient-reported side effects among three chemotherapy regimens for breast cancer. Cancer Pract 2(1):57–62 Greene D et al (1993) A comparison of patient-reported side effects among three chemotherapy regimens for breast cancer. Cancer Pract 2(1):57–62
8.
go back to reference Järvelä LS et al (2012) Effects of a home-based exercise program on metabolic risk factors and fitness in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 59(1):155–160PubMedCrossRef Järvelä LS et al (2012) Effects of a home-based exercise program on metabolic risk factors and fitness in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 59(1):155–160PubMedCrossRef
9.
go back to reference van Brussel M et al (2006) Physical function and fitness in long-term survivors of childhood leukaemia. Pediatr Rehabil 9(3):267–274PubMedCrossRef van Brussel M et al (2006) Physical function and fitness in long-term survivors of childhood leukaemia. Pediatr Rehabil 9(3):267–274PubMedCrossRef
11.
go back to reference Miyamoto Y et al (2015) Negative impact of skeletal muscle loss after systemic chemotherapy in patients with unresectable colorectal cancer. PLoS ONE 10(6):e0129742PubMedPubMedCentralCrossRef Miyamoto Y et al (2015) Negative impact of skeletal muscle loss after systemic chemotherapy in patients with unresectable colorectal cancer. PLoS ONE 10(6):e0129742PubMedPubMedCentralCrossRef
12.
13.
go back to reference Argilés JM, López-Soriano FJ, Busquets S (2015) Muscle wasting in cancer: the role of mitochondria. Curr Opin Clin Nutr Metab Care 18(3):221–225PubMedCrossRef Argilés JM, López-Soriano FJ, Busquets S (2015) Muscle wasting in cancer: the role of mitochondria. Curr Opin Clin Nutr Metab Care 18(3):221–225PubMedCrossRef
14.
go back to reference Dobs AS et al (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14(4):335–345PubMedPubMedCentralCrossRef Dobs AS et al (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14(4):335–345PubMedPubMedCentralCrossRef
15.
go back to reference Ness KK et al (2007) Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 49(7):975–981PubMedCrossRef Ness KK et al (2007) Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 49(7):975–981PubMedCrossRef
16.
go back to reference Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741PubMedCrossRef Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741PubMedCrossRef
18.
go back to reference Schelman WR et al (2009) A phase I study of Triapine® in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 63(6):1147–1156PubMedCrossRef Schelman WR et al (2009) A phase I study of Triapine® in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 63(6):1147–1156PubMedCrossRef
19.
go back to reference Lu P (2005) Monitoring cardiac function in patients receiving doxorubicin. Semin Nucl Med 35(3):197–201PubMedCrossRef Lu P (2005) Monitoring cardiac function in patients receiving doxorubicin. Semin Nucl Med 35(3):197–201PubMedCrossRef
20.
go back to reference Agudelo D et al (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150PubMedCrossRef Agudelo D et al (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150PubMedCrossRef
21.
go back to reference Quach B, Birk A, Szeto H (2014) Mechanism of preventing doxorubicin-induced mitochondrial toxicity with cardiolipin-targeted peptide, SS-31 (966.1). FASEB J 28(1 Supplement):966.1 Quach B, Birk A, Szeto H (2014) Mechanism of preventing doxorubicin-induced mitochondrial toxicity with cardiolipin-targeted peptide, SS-31 (966.1). FASEB J 28(1 Supplement):966.1
22.
go back to reference Cheregi B et al (2015) Chemotherapy-induced mitochondrial respiratory dysfunction, oxidant production and death in healthy skeletal muscle C2C12 myoblast and myotube models. Neuromuscul Disord 25(Supplement 2):S202CrossRef Cheregi B et al (2015) Chemotherapy-induced mitochondrial respiratory dysfunction, oxidant production and death in healthy skeletal muscle C2C12 myoblast and myotube models. Neuromuscul Disord 25(Supplement 2):S202CrossRef
24.
go back to reference Sawyer DB et al (2010) Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113PubMedPubMedCentralCrossRef Sawyer DB et al (2010) Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113PubMedPubMedCentralCrossRef
25.
go back to reference Sarosiek KA, Chonghaile TN, Letai A (2013) Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 23(12):612–619PubMedCrossRef Sarosiek KA, Chonghaile TN, Letai A (2013) Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 23(12):612–619PubMedCrossRef
27.
28.
go back to reference Davies K, Doroshow J (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261(7):3060–3067PubMed Davies K, Doroshow J (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261(7):3060–3067PubMed
29.
go back to reference Doroshow J, Davies K (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261(7):3068–3074PubMed Doroshow J, Davies K (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261(7):3068–3074PubMed
30.
go back to reference Chen Q et al (2003) Production of reactive oxygen species by mitochondria central role of complex III. J Biol Chem 278(38):36027–36031PubMedCrossRef Chen Q et al (2003) Production of reactive oxygen species by mitochondria central role of complex III. J Biol Chem 278(38):36027–36031PubMedCrossRef
31.
go back to reference Chen Y et al (2007) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7(3):147PubMedCrossRef Chen Y et al (2007) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7(3):147PubMedCrossRef
32.
go back to reference Dirks-Naylor AJ et al (2013) The effects of acute doxorubicin treatment on proteome lysine acetylation status and apical caspases in skeletal muscle of fasted animals. J Cachexia Sarcopenia Muscle 4(3):239–243PubMedPubMedCentralCrossRef Dirks-Naylor AJ et al (2013) The effects of acute doxorubicin treatment on proteome lysine acetylation status and apical caspases in skeletal muscle of fasted animals. J Cachexia Sarcopenia Muscle 4(3):239–243PubMedPubMedCentralCrossRef
33.
go back to reference Gilliam LAA et al (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302:C195–C202PubMedCrossRef Gilliam LAA et al (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302:C195–C202PubMedCrossRef
34.
go back to reference Xu X, Persson HL, Richardson DR (2005) Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol 68(2):261–271PubMed Xu X, Persson HL, Richardson DR (2005) Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol 68(2):261–271PubMed
35.
go back to reference Finn NA, Findley HW, Kemp ML (2011) A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLoS Comput Biol 7(9):e1002151PubMedPubMedCentralCrossRef Finn NA, Findley HW, Kemp ML (2011) A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLoS Comput Biol 7(9):e1002151PubMedPubMedCentralCrossRef
36.
go back to reference Ismail HM et al (2013) Inhibition of iPLA2β and of stretch-activated channels by doxorubicin alters dystrophic muscle function. Br J Pharmacol 169(7):1537–1550PubMedPubMedCentralCrossRef Ismail HM et al (2013) Inhibition of iPLA2β and of stretch-activated channels by doxorubicin alters dystrophic muscle function. Br J Pharmacol 169(7):1537–1550PubMedPubMedCentralCrossRef
37.
go back to reference Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300PubMedCrossRef Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300PubMedCrossRef
39.
go back to reference Goodwin P et al (1978) The effect of gamma radiation and neocarzinostatin of NAD and ATP levels in mouse leukaemia cells. Biochimica et Biophysica Acta (BBA) Gen Subj 543(4):576–582CrossRef Goodwin P et al (1978) The effect of gamma radiation and neocarzinostatin of NAD and ATP levels in mouse leukaemia cells. Biochimica et Biophysica Acta (BBA) Gen Subj 543(4):576–582CrossRef
40.
go back to reference Skidmore CJ et al (1979) The Involvement of poly (ADP-ribose) polymerase in the degradation of NAD caused by γ-radiation and N-methyl-N-nitrosourea. Eur J Biochem 101(1):135–142PubMedCrossRef Skidmore CJ et al (1979) The Involvement of poly (ADP-ribose) polymerase in the degradation of NAD caused by γ-radiation and N-methyl-N-nitrosourea. Eur J Biochem 101(1):135–142PubMedCrossRef
41.
go back to reference Ying W, Garnier P, Swanson RA (2003) NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 308(4):809–813PubMedCrossRef Ying W, Garnier P, Swanson RA (2003) NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 308(4):809–813PubMedCrossRef
43.
go back to reference Niere M et al (2008) Functional localization of two poly (ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824PubMedCrossRef Niere M et al (2008) Functional localization of two poly (ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824PubMedCrossRef
44.
go back to reference Lai Y et al (2008) Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 104(6):1700–1711PubMedCrossRef Lai Y et al (2008) Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 104(6):1700–1711PubMedCrossRef
46.
go back to reference Devalaraja-Narashimha K, Padanilam BJ (2010) PARP1 deficiency exacerbates diet-induced obesity in mice. J Endocrinol 205(3):243–252PubMedCrossRef Devalaraja-Narashimha K, Padanilam BJ (2010) PARP1 deficiency exacerbates diet-induced obesity in mice. J Endocrinol 205(3):243–252PubMedCrossRef
47.
go back to reference Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24 Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24
48.
go back to reference Leeuwenburgh C (2003) Role of apoptosis in sarcopenia. J Gerontol Ser A Biol Sci Med Sci 58(11):999–1001CrossRef Leeuwenburgh C (2003) Role of apoptosis in sarcopenia. J Gerontol Ser A Biol Sci Med Sci 58(11):999–1001CrossRef
49.
go back to reference Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344PubMedCrossRef Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344PubMedCrossRef
50.
go back to reference Du J et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Investig 113(1):115–123PubMedPubMedCentralCrossRef Du J et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Investig 113(1):115–123PubMedPubMedCentralCrossRef
51.
52.
go back to reference Lecker SH et al (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129(1):227S–237SPubMed Lecker SH et al (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129(1):227S–237SPubMed
53.
go back to reference Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807–1819PubMedCrossRef Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807–1819PubMedCrossRef
54.
go back to reference Bonnard C et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Investig 118(2):789–800PubMedPubMedCentral Bonnard C et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Investig 118(2):789–800PubMedPubMedCentral
55.
go back to reference Adachi K et al (1993) A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 195(2):945–951PubMedCrossRef Adachi K et al (1993) A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 195(2):945–951PubMedCrossRef
57.
go back to reference Raymond E et al (1998) Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol 25(2 Suppl 5):4–12PubMed Raymond E et al (1998) Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol 25(2 Suppl 5):4–12PubMed
58.
go back to reference André T et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350(23):2343–2351PubMedCrossRef André T et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350(23):2343–2351PubMedCrossRef
59.
go back to reference Raymond E et al (1998) Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 9(10):1053–1071PubMedCrossRef Raymond E et al (1998) Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 9(10):1053–1071PubMedCrossRef
60.
go back to reference Talvensaari KK et al (1995) Decreased isokinetic trunk muscle strength and performance in long-term survivors of childhood malignancies: correlation with hormonal defects. Arch Phys Med Rehabil 76(11):983–988PubMedCrossRef Talvensaari KK et al (1995) Decreased isokinetic trunk muscle strength and performance in long-term survivors of childhood malignancies: correlation with hormonal defects. Arch Phys Med Rehabil 76(11):983–988PubMedCrossRef
61.
go back to reference Gourdier I et al (2004) Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene 23(45):7449–7457PubMedCrossRef Gourdier I et al (2004) Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene 23(45):7449–7457PubMedCrossRef
62.
go back to reference Lutsenko S et al (2007) Function and regulation of human copper-transporting ATPases. Physiol RevVol. 87:1011–1046CrossRef Lutsenko S et al (2007) Function and regulation of human copper-transporting ATPases. Physiol RevVol. 87:1011–1046CrossRef
64.
go back to reference Stojanovska V, McQuade RM, Stewart M, Timpani CA, Sorensen J, Orbell J, Rybalka E, Nurgali K (2015) Platinum accumulation and changes in mitochondrial function of the longitudinal muscle & myenteric plexus following oxaliplatin administration. In: Proceedings of the Australian Physiology Society Stojanovska V, McQuade RM, Stewart M, Timpani CA, Sorensen J, Orbell J, Rybalka E, Nurgali K (2015) Platinum accumulation and changes in mitochondrial function of the longitudinal muscle & myenteric plexus following oxaliplatin administration. In: Proceedings of the Australian Physiology Society
65.
go back to reference Gilliam LAA et al (2013) The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic Biol Med 65:988–996PubMedCrossRef Gilliam LAA et al (2013) The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic Biol Med 65:988–996PubMedCrossRef
67.
go back to reference Min K et al (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111:1459–1466PubMedPubMedCentralCrossRef Min K et al (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111:1459–1466PubMedPubMedCentralCrossRef
68.
go back to reference Singh K, Hood DA (2011) Effect of denervation-induced muscle disuse on mitochondrial protein import. American Physiol Cell Physiol 300:C138–C145CrossRef Singh K, Hood DA (2011) Effect of denervation-induced muscle disuse on mitochondrial protein import. American Physiol Cell Physiol 300:C138–C145CrossRef
69.
go back to reference Min K et al (2015) Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 593(8):2017–2036PubMedPubMedCentralCrossRef Min K et al (2015) Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 593(8):2017–2036PubMedPubMedCentralCrossRef
70.
go back to reference Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(9):2129–2138PubMedPubMedCentralCrossRef Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(9):2129–2138PubMedPubMedCentralCrossRef
72.
go back to reference Lokireddy S et al (2012) The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab 16(5):613–624PubMedCrossRef Lokireddy S et al (2012) The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab 16(5):613–624PubMedCrossRef
73.
go back to reference Sorensen J, Timpani CA, Campelj D, Petersen AC, Hayes A, Rybalka E (2015) Idebenone protects against chemotherapy-induced skeletal muscle wasting and mitochondrial dysfunction in mice. Proc Aust Physiol Soc 46:142 Sorensen J, Timpani CA, Campelj D, Petersen AC, Hayes A, Rybalka E (2015) Idebenone protects against chemotherapy-induced skeletal muscle wasting and mitochondrial dysfunction in mice. Proc Aust Physiol Soc 46:142
74.
go back to reference Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843PubMedCrossRef Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843PubMedCrossRef
75.
go back to reference Jang YC et al (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24(5):1376–1390PubMedPubMedCentralCrossRef Jang YC et al (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24(5):1376–1390PubMedPubMedCentralCrossRef
76.
go back to reference Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Models Mech 6(1):25–39CrossRef Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Models Mech 6(1):25–39CrossRef
77.
go back to reference Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? In: Scatena R, Bottoni P, Giardina B (eds) Advances in mitochondrial medicine. Springer, Dordrecht, pp 93–136CrossRef Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? In: Scatena R, Bottoni P, Giardina B (eds) Advances in mitochondrial medicine. Springer, Dordrecht, pp 93–136CrossRef
78.
go back to reference Kurihara Y et al (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287(5):3265–3272PubMedCrossRef Kurihara Y et al (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287(5):3265–3272PubMedCrossRef
80.
go back to reference Maccarrone M, Melino G, Finazzi-Agro A (2001) Lipoxygenases and their involvement in programmed cell death. Cell Death Differ 8(8):776–784PubMedCrossRef Maccarrone M, Melino G, Finazzi-Agro A (2001) Lipoxygenases and their involvement in programmed cell death. Cell Death Differ 8(8):776–784PubMedCrossRef
81.
go back to reference England K, Cotter T (2005) Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10(5):237–245PubMedCrossRef England K, Cotter T (2005) Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10(5):237–245PubMedCrossRef
82.
go back to reference Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35(4):411–429PubMedCrossRef Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35(4):411–429PubMedCrossRef
84.
go back to reference Corradetti RM (2014) Chemotherapy-induced peripheral neuropathy. Chemotherapy 249:279 Corradetti RM (2014) Chemotherapy-induced peripheral neuropathy. Chemotherapy 249:279
85.
go back to reference Lind MJ (2008) Principles of cytotoxic chemotherapy. Medicine 36(1):19–23CrossRef Lind MJ (2008) Principles of cytotoxic chemotherapy. Medicine 36(1):19–23CrossRef
86.
go back to reference Coates A et al (1983) On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 19(2):203–208PubMedCrossRef Coates A et al (1983) On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 19(2):203–208PubMedCrossRef
87.
go back to reference Courneya KS et al (2004) Exercise issues in older cancer survivors. CritRev Oncol Hematol 51(3):249–261CrossRef Courneya KS et al (2004) Exercise issues in older cancer survivors. CritRev Oncol Hematol 51(3):249–261CrossRef
88.
go back to reference Willemse P-PM et al (2014) Abdominal visceral and subcutaneous fat increase, insulin resistance and hyperlipidemia in testicular cancer patients treated with cisplatin-based chemotherapy. Acta Oncol 53(3):351–360PubMedCrossRef Willemse P-PM et al (2014) Abdominal visceral and subcutaneous fat increase, insulin resistance and hyperlipidemia in testicular cancer patients treated with cisplatin-based chemotherapy. Acta Oncol 53(3):351–360PubMedCrossRef
89.
go back to reference Kent-Braun JA, Fitts RH, Christie A (2012) Skeletal muscle fatigue. Compr Physiol 2:997–1044PubMed Kent-Braun JA, Fitts RH, Christie A (2012) Skeletal muscle fatigue. Compr Physiol 2:997–1044PubMed
90.
go back to reference MacIntosh BR, Holash RJ, Renaud J-M (2012) Skeletal muscle fatigue–regulation of excitation–contraction coupling to avoid metabolic catastrophe. J Cell Sci 125(9):2105–2114PubMedCrossRef MacIntosh BR, Holash RJ, Renaud J-M (2012) Skeletal muscle fatigue–regulation of excitation–contraction coupling to avoid metabolic catastrophe. J Cell Sci 125(9):2105–2114PubMedCrossRef
91.
go back to reference Jacobs RA et al (2013) Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol 115(6):785–793PubMedCrossRef Jacobs RA et al (2013) Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol 115(6):785–793PubMedCrossRef
92.
go back to reference Gejl K et al. (2015) Repeated high-intensity exercise modulates Ca2+ sensitivity of human skeletal muscle fibers. Scand J Med Sci Sports 26(5):488–97PubMedCrossRef Gejl K et al. (2015) Repeated high-intensity exercise modulates Ca2+ sensitivity of human skeletal muscle fibers. Scand J Med Sci Sports 26(5):488–97PubMedCrossRef
93.
go back to reference Kano Y et al (2012) Mechanisms of exercise-induced muscle damage and fatigue: intracellular calcium accumulation. J Phys Fit Sports Med 1(3):505–512CrossRef Kano Y et al (2012) Mechanisms of exercise-induced muscle damage and fatigue: intracellular calcium accumulation. J Phys Fit Sports Med 1(3):505–512CrossRef
94.
go back to reference Hydock D et al (2015) Protective effects of endurance or resistance training exercise on chemotherapy-induced skeletal muscle weakness and fatigue. FASEB J 29(1 Supplement):LB660 Hydock D et al (2015) Protective effects of endurance or resistance training exercise on chemotherapy-induced skeletal muscle weakness and fatigue. FASEB J 29(1 Supplement):LB660
95.
go back to reference Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-oncology 14(suppl 4):iv45–iv54PubMedPubMedCentralCrossRef Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-oncology 14(suppl 4):iv45–iv54PubMedPubMedCentralCrossRef
96.
go back to reference Wall BT, Dirks ML, van Loon LJC (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12(4):898–906PubMedCrossRef Wall BT, Dirks ML, van Loon LJC (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12(4):898–906PubMedCrossRef
97.
go back to reference Franchi M et al (2014) Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol 210(3):642–654CrossRef Franchi M et al (2014) Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol 210(3):642–654CrossRef
98.
go back to reference McQuade RM, Bornstein JC, Nurgali K (2014) Anti-colorectal cancer chemotherapy-induced diarrhoea: current treatments and side-effects. Int J Clin Med 5(7):393CrossRef McQuade RM, Bornstein JC, Nurgali K (2014) Anti-colorectal cancer chemotherapy-induced diarrhoea: current treatments and side-effects. Int J Clin Med 5(7):393CrossRef
99.
go back to reference Hovi L et al (1993) Impaired muscle strength in female adolescents and young adults surviving leukemia in childhood. Cancer Phila 72:276CrossRef Hovi L et al (1993) Impaired muscle strength in female adolescents and young adults surviving leukemia in childhood. Cancer Phila 72:276CrossRef
100.
go back to reference Malina RM, Bouchard C, Bar-Or O (2004) Growth, maturation, and physical activity. Human Kinetics, Champaign Malina RM, Bouchard C, Bar-Or O (2004) Growth, maturation, and physical activity. Human Kinetics, Champaign
101.
go back to reference Mouly V et al (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184(1):3–15PubMedCrossRef Mouly V et al (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184(1):3–15PubMedCrossRef
102.
go back to reference Scully RE, Lipshultz SE (2007) Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol 7(2):122–128PubMedCrossRef Scully RE, Lipshultz SE (2007) Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol 7(2):122–128PubMedCrossRef
103.
go back to reference Syrjala KL et al (2005) Late effects of hematopoietic cell transplantation among 10-year adult survivors compared with case-matched controls. J Clin Oncol 23(27):6596–6606PubMedCrossRef Syrjala KL et al (2005) Late effects of hematopoietic cell transplantation among 10-year adult survivors compared with case-matched controls. J Clin Oncol 23(27):6596–6606PubMedCrossRef
104.
go back to reference Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 67(8):941–947PubMedCrossRef Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 67(8):941–947PubMedCrossRef
105.
go back to reference Literati-Nagy B et al (2009) Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial. Hormone Metab Res Hormon-und Stoffwechselforschung Hormones et metabolisme 41(5):374–380PubMedCrossRef Literati-Nagy B et al (2009) Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial. Hormone Metab Res Hormon-und Stoffwechselforschung Hormones et metabolisme 41(5):374–380PubMedCrossRef
Metadata
Title
Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting?
Authors
James C. Sorensen
Beatrice D. Cheregi
Cara A. Timpani
Kulmira Nurgali
Alan Hayes
Emma Rybalka
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2016
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-016-3045-3

Other articles of this Issue 4/2016

Cancer Chemotherapy and Pharmacology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine