Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 5/2015

01-05-2015 | Original Article

Positron emission tomography imaging of human colon cancer xenografts in mice with [18F]fluorothymidine after TAS-102 treatment

Authors: Haeng Jung Lee, Seung Jun Oh, Eun Jung Lee, Jin Hwa Chung, Yeseulmi Kim, Jin-Sook Ryu, Seog Young Kim, Seung Jin Lee, Dae Hyuk Moon, Tae Won Kim

Published in: Cancer Chemotherapy and Pharmacology | Issue 5/2015

Login to get access

Abstract

Purpose

TAS-102 is an orally administered anticancer agent composed of α,α,α-trifluorothymidine (FTD) and thymidine phosphorylase inhibitor (TPI). This study assessed 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) uptake after TAS-102 administration.

Methods

The human colorectal carcinoma cell lines HCT116, HT29, HCT8 and SW620 were exposed to FTD for 2 h, further incubated for 0, 2 and 24 h, and assayed for [3H]FLT uptake, nucleoside transport, thymidine kinase 1 (TK1) expression and TK1 activity. Static and 2-h dynamic [18F]FLT positron emission tomography (PET) was performed in mice bearing HT29 or SW620 tumours orally administered with vehicle or TAS-102.

Results

FTD decreased the viability of all cell lines, whereas increased [3H]FLT uptake (P < 0.05). Increased nucleoside transport and/or TK1 expression were observed 24 h after FTD, but not in 0–2 h. Static [18F]FLT PET in mice bearing HT29 tumours showed accumulation of [18F]FLT in tumours 1 h (day 1) after TAS-102. Two-hour dynamic PET in mice bearing SW620 tumours showed increased influx constant and volume of distribution of phosphorylated [18F]FLT on days 1 and 8 (P < 0.05) after TAS-102 with decreased dephosphorylation on day 1 (P < 0.001). Ex vivo studies showed that SW620 tumours after TAS-102 had higher TK1 expression than those with vehicle on days 8 and 15.

Conclusion

TAS-102 administration induces an increase in [18F]FLT uptake. Mechanisms may involve decreased dephosphorylation of [18F]FLT phosphate early after TAS-102 administration. Increased TK1 expression and/or nucleoside transporter may be related to increased [18F]FLT uptake at a later time. [18F]FLT PET has a potential to assess the pharmacodynamics of TAS-102 in cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ (2007) Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci 98:779–789CrossRefPubMed Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ (2007) Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci 98:779–789CrossRefPubMed
2.
go back to reference Yoshino T, Mizunuma N, Yamazaki K, Nishina T, Komatsu Y, Baba H, Tsuji A, Yamaguchi K, Muro K, Sugimoto N, Tsuji Y, Moriwaki T, Esaki T, Hamada C, Tanase T, Ohtsu A (2012) TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 13:993–1001CrossRefPubMed Yoshino T, Mizunuma N, Yamazaki K, Nishina T, Komatsu Y, Baba H, Tsuji A, Yamaguchi K, Muro K, Sugimoto N, Tsuji Y, Moriwaki T, Esaki T, Hamada C, Tanase T, Ohtsu A (2012) TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 13:993–1001CrossRefPubMed
3.
go back to reference Taiho Pharma USA I (2012) Study of TAS-102 in Patients With Metastatic Colorectal Cancer Refractory to Standard Chemotherapies (RECOURSE). U.S. National Institutes of Health; 2012 Taiho Pharma USA I (2012) Study of TAS-102 in Patients With Metastatic Colorectal Cancer Refractory to Standard Chemotherapies (RECOURSE). U.S. National Institutes of Health; 2012
4.
go back to reference Emura T, Suzuki N, Yamaguchi M, Ohshimo H, Fukushima M (2004) A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA. Int J Oncol 25:571–578PubMed Emura T, Suzuki N, Yamaguchi M, Ohshimo H, Fukushima M (2004) A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA. Int J Oncol 25:571–578PubMed
5.
go back to reference Temmink OH, Comijn EM, Fukushima M, Peters GJ (2004) Intracellular thymidylate synthase inhibition by trifluorothymidine in FM3A cells. Nucleosides Nucleotides Nucleic Acids 23:1491–1494CrossRefPubMed Temmink OH, Comijn EM, Fukushima M, Peters GJ (2004) Intracellular thymidylate synthase inhibition by trifluorothymidine in FM3A cells. Nucleosides Nucleotides Nucleic Acids 23:1491–1494CrossRefPubMed
6.
go back to reference Emura T, Nakagawa F, Fujioka A, Ohshimo H, Yokogawa T, Okabe H, Kitazato K (2004) An optimal dosing schedule for a novel combination antimetabolite, TAS-102, based on its intracellular metabolism and its incorporation into DNA. Int J Mol Med 13:249–255PubMed Emura T, Nakagawa F, Fujioka A, Ohshimo H, Yokogawa T, Okabe H, Kitazato K (2004) An optimal dosing schedule for a novel combination antimetabolite, TAS-102, based on its intracellular metabolism and its incorporation into DNA. Int J Mol Med 13:249–255PubMed
7.
go back to reference Suzuki N, Emura T, Fukushima M (2011) Mode of action of trifluorothymidine (TFT) against DNA replication and repair enzymes. Int J Oncol 39:263–270PubMed Suzuki N, Emura T, Fukushima M (2011) Mode of action of trifluorothymidine (TFT) against DNA replication and repair enzymes. Int J Oncol 39:263–270PubMed
8.
go back to reference Markley JC, Chirakul P, Sologub D, Sigurdsson ST (2001) Incorporation of 2′-deoxy-5-(trifluoromethyl)uridine and 5-cyano-2′-deoxyuridine into DNA. Bioorg Med Chem Lett 11:2453–2455CrossRefPubMed Markley JC, Chirakul P, Sologub D, Sigurdsson ST (2001) Incorporation of 2′-deoxy-5-(trifluoromethyl)uridine and 5-cyano-2′-deoxyuridine into DNA. Bioorg Med Chem Lett 11:2453–2455CrossRefPubMed
9.
go back to reference Tsuchiya H, Kuwata K, Nagayama S, Yamashita K, Kamiya H, Harashima H (2004) Pharmacokinetic modeling of species-dependent enhanced bioavailability of trifluorothymidine by thymidine phosphorylase inhibitor. Drug Metab Pharmacokinet 19:206–215CrossRefPubMed Tsuchiya H, Kuwata K, Nagayama S, Yamashita K, Kamiya H, Harashima H (2004) Pharmacokinetic modeling of species-dependent enhanced bioavailability of trifluorothymidine by thymidine phosphorylase inhibitor. Drug Metab Pharmacokinet 19:206–215CrossRefPubMed
10.
go back to reference Emura T, Nakagawa F, Fujioka A, Ohshimo H, Kitazato K (2004) Thymidine kinase and thymidine phosphorylase level as the main predictive parameter for sensitivity to TAS-102 in a mouse model. Oncol Rep 11:381–387PubMed Emura T, Nakagawa F, Fujioka A, Ohshimo H, Kitazato K (2004) Thymidine kinase and thymidine phosphorylase level as the main predictive parameter for sensitivity to TAS-102 in a mouse model. Oncol Rep 11:381–387PubMed
11.
go back to reference Temmink OH, de Bruin M, Comijn EM, Fukushima M, Peters GJ (2005) Determinants of trifluorothymidine sensitivity and metabolism in colon and lung cancer cells. Anticancer Drugs 16:285–292CrossRefPubMed Temmink OH, de Bruin M, Comijn EM, Fukushima M, Peters GJ (2005) Determinants of trifluorothymidine sensitivity and metabolism in colon and lung cancer cells. Anticancer Drugs 16:285–292CrossRefPubMed
12.
go back to reference Temmink OH, Bijnsdorp IV, Prins HJ, Losekoot N, Adema AD, Smid K, Honeywell RJ, Ylstra B, Eijk PP, Fukushima M, Peters GJ (2010) Trifluorothymidine resistance is associated with decreased thymidine kinase and equilibrative nucleoside transporter expression or increased secretory phospholipase A2. Mol Cancer Ther 9:1047–1057CrossRefPubMed Temmink OH, Bijnsdorp IV, Prins HJ, Losekoot N, Adema AD, Smid K, Honeywell RJ, Ylstra B, Eijk PP, Fukushima M, Peters GJ (2010) Trifluorothymidine resistance is associated with decreased thymidine kinase and equilibrative nucleoside transporter expression or increased secretory phospholipase A2. Mol Cancer Ther 9:1047–1057CrossRefPubMed
13.
go back to reference Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed
14.
go back to reference Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217PubMed Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217PubMed
15.
go back to reference Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA (2003) Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 44:2027–2032PubMed Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA (2003) Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 44:2027–2032PubMed
16.
go back to reference Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK, Price PM, Aboagye EO (2005) The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32:257–263CrossRefPubMed Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK, Price PM, Aboagye EO (2005) The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32:257–263CrossRefPubMed
17.
go back to reference Perumal M, Pillai RG, Barthel H, Leyton J, Latigo JR, Forster M, Mitchell F, Jackman AL, Aboagye EO (2006) Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res 66:8558–8564CrossRefPubMed Perumal M, Pillai RG, Barthel H, Leyton J, Latigo JR, Forster M, Mitchell F, Jackman AL, Aboagye EO (2006) Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res 66:8558–8564CrossRefPubMed
18.
go back to reference Lee SJ, Kim SY, Chung JH, Oh SJ, Ryu JS, Hong YS, Kim TW, Moon DH (2010) Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3′-deoxy-3′-[18F]fluorothymidine flare. Biochem Pharmacol 80:1528–1536CrossRefPubMed Lee SJ, Kim SY, Chung JH, Oh SJ, Ryu JS, Hong YS, Kim TW, Moon DH (2010) Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3′-deoxy-3′-[18F]fluorothymidine flare. Biochem Pharmacol 80:1528–1536CrossRefPubMed
19.
go back to reference Lee SJ, Yeo JS, Lee HJ, Lee EJ, Kim SY, Jang SJ, Lee JJ, Ryu JS, Moon DH (2014) Thymidine phosphorylase influences [18F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 41:1327–1335CrossRefPubMed Lee SJ, Yeo JS, Lee HJ, Lee EJ, Kim SY, Jang SJ, Lee JJ, Ryu JS, Moon DH (2014) Thymidine phosphorylase influences [18F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 41:1327–1335CrossRefPubMed
20.
go back to reference Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, Oh SJ, Lee DS, Moon DH (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–2066CrossRefPubMed Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, Oh SJ, Lee DS, Moon DH (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–2066CrossRefPubMed
21.
go back to reference Choi SJ, Kim SY, Kim SJ, Lee JS, Lee SJ, Park SA, Lee SJ, Yun SC, Im KC, Oh SJ, Kim SW, Kim JS, Ryu JS, Moon DH (2009) Reproducibility of the kinetic analysis of 3′-deoxy-3′-[(18)F]fluorothymidine positron emission tomography in mouse tumor models. Nucl Med Biol 36:711–719CrossRefPubMed Choi SJ, Kim SY, Kim SJ, Lee JS, Lee SJ, Park SA, Lee SJ, Yun SC, Im KC, Oh SJ, Kim SW, Kim JS, Ryu JS, Moon DH (2009) Reproducibility of the kinetic analysis of 3′-deoxy-3′-[(18)F]fluorothymidine positron emission tomography in mouse tumor models. Nucl Med Biol 36:711–719CrossRefPubMed
22.
go back to reference Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 47:1612–1621PubMed Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 47:1612–1621PubMed
23.
go back to reference Lee SJ, Kang HY, Kim SY, Chung JH, Oh SJ, Ryu JS, Kim SB, Kang JS, Park SK, Kim HM, Kim MH, Moon DH (2011) Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[18F]fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging 38:1436–1448CrossRefPubMed Lee SJ, Kang HY, Kim SY, Chung JH, Oh SJ, Ryu JS, Kim SB, Kang JS, Park SK, Kim HM, Kim MH, Moon DH (2011) Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3′-deoxy-3′-[18F]fluorothymidine in preclinical tumor models. Eur J Nucl Med Mol Imaging 38:1436–1448CrossRefPubMed
24.
go back to reference Bianchi V, Pontis E, Reichard P (1986) Interrelations between substrate cycles and de novo synthesis of pyrimidine deoxyribonucleoside triphosphates in 3T6 cells. Proc Natl Acad Sci USA 83:986–990CrossRefPubMedCentralPubMed Bianchi V, Pontis E, Reichard P (1986) Interrelations between substrate cycles and de novo synthesis of pyrimidine deoxyribonucleoside triphosphates in 3T6 cells. Proc Natl Acad Sci USA 83:986–990CrossRefPubMedCentralPubMed
25.
go back to reference Reyes P, Heidelberger C (1965) Fluorinated pyrimidines. XXVI. Mammalian thymidylate synthetase: its mechanism of action and inhibition by fluorinated nucleotides. Mol Pharmacol 1:14–30PubMed Reyes P, Heidelberger C (1965) Fluorinated pyrimidines. XXVI. Mammalian thymidylate synthetase: its mechanism of action and inhibition by fluorinated nucleotides. Mol Pharmacol 1:14–30PubMed
26.
go back to reference Bianchi V, Ferraro P, Borella S, Bonvini P, Reichard P (1994) Effects of mutational loss of nucleoside kinases on deoxyadenosine 5′-phosphate/deoxyadenosine substrate cycle in cultured CEM and V79 cells. J Biol Chem 269:16677–16683PubMed Bianchi V, Ferraro P, Borella S, Bonvini P, Reichard P (1994) Effects of mutational loss of nucleoside kinases on deoxyadenosine 5′-phosphate/deoxyadenosine substrate cycle in cultured CEM and V79 cells. J Biol Chem 269:16677–16683PubMed
27.
go back to reference Hong IK, Kim YS, Chung JH, Lee SJ, Oh SJ, Lee SJ, Oh J, Ryu JS, Kim TW, Kim DY, Moon DH (2014) 3′-deoxy-3′-[18F]fluorothymidine positron emission Tomography imaging of thymidine kinase 1 activity after 5-fluorouracil treatment in a mouse tumor model. Anticancer Res 34:759–766PubMed Hong IK, Kim YS, Chung JH, Lee SJ, Oh SJ, Lee SJ, Oh J, Ryu JS, Kim TW, Kim DY, Moon DH (2014) 3′-deoxy-3′-[18F]fluorothymidine positron emission Tomography imaging of thymidine kinase 1 activity after 5-fluorouracil treatment in a mouse tumor model. Anticancer Res 34:759–766PubMed
28.
go back to reference Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32:663–671CrossRefPubMed Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32:663–671CrossRefPubMed
29.
go back to reference Doi T, Ohtsu A, Yoshino T, Boku N, Onozawa Y, Fukutomi A, Hironaka S, Koizumi W, Sasaki T (2012) Phase I study of TAS-102 treatment in Japanese patients with advanced solid tumours. Br J Cancer 107:429–434CrossRefPubMedCentralPubMed Doi T, Ohtsu A, Yoshino T, Boku N, Onozawa Y, Fukutomi A, Hironaka S, Koizumi W, Sasaki T (2012) Phase I study of TAS-102 treatment in Japanese patients with advanced solid tumours. Br J Cancer 107:429–434CrossRefPubMedCentralPubMed
30.
go back to reference Bijnsdorp IV, Kruyt FA, Gokoel S, Fukushima M, Peters GJ (2008) Synergistic interaction between trifluorothymidine and docetaxel is sequence dependent. Cancer Sci 99:2302–2308CrossRefPubMed Bijnsdorp IV, Kruyt FA, Gokoel S, Fukushima M, Peters GJ (2008) Synergistic interaction between trifluorothymidine and docetaxel is sequence dependent. Cancer Sci 99:2302–2308CrossRefPubMed
31.
go back to reference Chang ZF, Huang DY, Chi LM (1998) Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem 273:12095–12100CrossRefPubMed Chang ZF, Huang DY, Chi LM (1998) Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem 273:12095–12100CrossRefPubMed
32.
go back to reference Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, Wells JM, Krohn KA (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46:274–282PubMed Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, Wells JM, Krohn KA (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46:274–282PubMed
33.
go back to reference Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V (2003) Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 66:471–479CrossRefPubMed Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V (2003) Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 66:471–479CrossRefPubMed
Metadata
Title
Positron emission tomography imaging of human colon cancer xenografts in mice with [18F]fluorothymidine after TAS-102 treatment
Authors
Haeng Jung Lee
Seung Jun Oh
Eun Jung Lee
Jin Hwa Chung
Yeseulmi Kim
Jin-Sook Ryu
Seog Young Kim
Seung Jin Lee
Dae Hyuk Moon
Tae Won Kim
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 5/2015
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-015-2718-7

Other articles of this Issue 5/2015

Cancer Chemotherapy and Pharmacology 5/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine