Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 3/2011

01-09-2011 | Original Article

Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice

Authors: Pedro M. G. Soares, Roberto C. P. Lima-Junior, José Maurício S. C. Mota, Priscilla F. C. Justino, Gerly Anne C. Brito, Ronaldo A. Ribeiro, Fernando Q. Cunha, Marcellus H. L. P. Souza

Published in: Cancer Chemotherapy and Pharmacology | Issue 3/2011

Login to get access

Abstract

Purpose

Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR−/−).

Methods

Wild-type mice or PAFR−/− mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured.

Results

5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-α, IL-1β and KC in comparison with saline-treated animals. In PAFR−/− mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-α, IL-1β and KC concentration.

Conclusions

In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Literature
1.
go back to reference Baerg J, Murphy JJ, Anderson R, Magee JF (1999) Neutropenic enteropathy: a 10-year review. J Pediatr Surg 34:1068–1071PubMedCrossRef Baerg J, Murphy JJ, Anderson R, Magee JF (1999) Neutropenic enteropathy: a 10-year review. J Pediatr Surg 34:1068–1071PubMedCrossRef
2.
go back to reference Borman RA, Jewell R, Hillier K (1998) Investigation of the effects of platelet-activating factor (PAF) on ion transport and prostaglandin synthesis in human colonic mucosa in vitro. Br J Pharmacol 123:231–236PubMedCrossRef Borman RA, Jewell R, Hillier K (1998) Investigation of the effects of platelet-activating factor (PAF) on ion transport and prostaglandin synthesis in human colonic mucosa in vitro. Br J Pharmacol 123:231–236PubMedCrossRef
3.
go back to reference Bowen JM, Gibson RJ, Cummins AG, Keefe DM (2006) Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Support Care Cancer 14:713–731PubMedCrossRef Bowen JM, Gibson RJ, Cummins AG, Keefe DM (2006) Intestinal mucositis: the role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Support Care Cancer 14:713–731PubMedCrossRef
4.
go back to reference Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622PubMed Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622PubMed
5.
go back to reference Caplan MS, Hedlund E, Adler L, Lickerman M, Hsueh W (1997) The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 24:296–301PubMedCrossRef Caplan MS, Hedlund E, Adler L, Lickerman M, Hsueh W (1997) The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 24:296–301PubMedCrossRef
6.
go back to reference Chao W, Liu H, Hanahan DJ, Olson MS (1192) Platelet-activating factor-stimulated protein tyrosine phosphorylation and eicosanoid synthesis in rat Kupffer cells. Evidence for calcium-dependent and protein kinase C-dependent and -independent pathways. J Biol Chem 267:6725–6735 Chao W, Liu H, Hanahan DJ, Olson MS (1192) Platelet-activating factor-stimulated protein tyrosine phosphorylation and eicosanoid synthesis in rat Kupffer cells. Evidence for calcium-dependent and protein kinase C-dependent and -independent pathways. J Biol Chem 267:6725–6735
7.
go back to reference Chao W, Olson MS (1993) Platelet-activating factor: receptors and signaltransduction. Biochem J 292:617–629PubMed Chao W, Olson MS (1993) Platelet-activating factor: receptors and signaltransduction. Biochem J 292:617–629PubMed
8.
go back to reference Cunha FQ, Boukili MA, Motta JIB, Vargaftig BB, Ferreira SH (1993) Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. Eur J Pharmacol 238:47–52PubMedCrossRef Cunha FQ, Boukili MA, Motta JIB, Vargaftig BB, Ferreira SH (1993) Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. Eur J Pharmacol 238:47–52PubMedCrossRef
9.
go back to reference Debek W, Chyczewski L, Makarewicz M (1998) Platelet-activating factor receptor-antagonist (BN 52021) stabilizes the oxidative-antioxidative balance and attenuates the morphological changes in the gastrointestinal tract in experimental hemorrhagic shock. Exp Toxicol Pathol 50:19–25PubMed Debek W, Chyczewski L, Makarewicz M (1998) Platelet-activating factor receptor-antagonist (BN 52021) stabilizes the oxidative-antioxidative balance and attenuates the morphological changes in the gastrointestinal tract in experimental hemorrhagic shock. Exp Toxicol Pathol 50:19–25PubMed
10.
go back to reference Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18:853–874PubMedCrossRef Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18:853–874PubMedCrossRef
11.
go back to reference Dupont L, Germain G, Dideberg O (1986) Crystal and molecular structure of BN 52021, a PAF-acether antagonist. Comparison with the conformation of Kadsurenone and related compounds. Pharmacol Res Commun 18:25–32PubMedCrossRef Dupont L, Germain G, Dideberg O (1986) Crystal and molecular structure of BN 52021, a PAF-acether antagonist. Comparison with the conformation of Kadsurenone and related compounds. Pharmacol Res Commun 18:25–32PubMedCrossRef
12.
go back to reference Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, Havill AM, Lu ZN, Aukerman SL, Pierce GF, Thomason A, Potten CS, Ulich TR, Lacey DL (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939PubMed Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, Havill AM, Lu ZN, Aukerman SL, Pierce GF, Thomason A, Potten CS, Ulich TR, Lacey DL (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939PubMed
13.
go back to reference Ferreira MA, Barcelos LS, Teixeira MM, Bakhle YS, Andrade SP (2007) Tumor growth, angiogenesis and inflammation in mice lacking receptors for platelet activating factor (PAF). Life Sci 81:210–217PubMedCrossRef Ferreira MA, Barcelos LS, Teixeira MM, Bakhle YS, Andrade SP (2007) Tumor growth, angiogenesis and inflammation in mice lacking receptors for platelet activating factor (PAF). Life Sci 81:210–217PubMedCrossRef
14.
go back to reference Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, Aspiotis R, Han Y, Nicholson DW, Karl IE (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501PubMedCrossRef Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, Aspiotis R, Han Y, Nicholson DW, Karl IE (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501PubMedCrossRef
15.
go back to reference Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F (2003) Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 6:6–23PubMedCrossRef Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F (2003) Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 6:6–23PubMedCrossRef
16.
go back to reference Hsueh W, Gonzalez-Crussi F, Arroyave JL (1987) Platelet-activating factor: an endogenous mediator for bowel necrosis in endotoxemia. FASEB J 1:403–405PubMed Hsueh W, Gonzalez-Crussi F, Arroyave JL (1987) Platelet-activating factor: an endogenous mediator for bowel necrosis in endotoxemia. FASEB J 1:403–405PubMed
17.
go back to reference Huang TY, Chu HC, Lin YL, Ho WH, Hou HS, Chao YC, Liao CL (2009) Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model. Biochem Biophys Res Commun 389:634–639PubMedCrossRef Huang TY, Chu HC, Lin YL, Ho WH, Hou HS, Chao YC, Liao CL (2009) Minocycline attenuates 5-fluorouracil-induced small intestinal mucositis in mouse model. Biochem Biophys Res Commun 389:634–639PubMedCrossRef
18.
go back to reference Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K, Fukuchi Y, Ikuta K, Miyazaki J, Kumada M, Shimizu T (1988) Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 187:1779–1788CrossRef Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K, Fukuchi Y, Ikuta K, Miyazaki J, Kumada M, Shimizu T (1988) Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 187:1779–1788CrossRef
19.
go back to reference Kuijpers TW, Van Den Berg JM, Tool AT, Roos D (2001) The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase. Clin Exp Immunol 123:412–420PubMedCrossRef Kuijpers TW, Van Den Berg JM, Tool AT, Roos D (2001) The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase. Clin Exp Immunol 123:412–420PubMedCrossRef
20.
go back to reference Liu SX, Tian R, Baskind H, Hsueh W, De Plaen IG (2009) Platelet-activating factor induces the processing of nuclear factor-kappaB p105 into p50, which mediates acute bowel injury in mice. Am J Physiol Gastrointest Liver Physiol 297:G76–G81PubMedCrossRef Liu SX, Tian R, Baskind H, Hsueh W, De Plaen IG (2009) Platelet-activating factor induces the processing of nuclear factor-kappaB p105 into p50, which mediates acute bowel injury in mice. Am J Physiol Gastrointest Liver Physiol 297:G76–G81PubMedCrossRef
21.
go back to reference Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63:239–251PubMedCrossRef Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63:239–251PubMedCrossRef
22.
go back to reference Longley DB, Harkin D, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338PubMedCrossRef Longley DB, Harkin D, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338PubMedCrossRef
23.
go back to reference Lu J, Caplan MS, Li D, Jilling T (2008) Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 294:G1181–G1190PubMedCrossRef Lu J, Caplan MS, Li D, Jilling T (2008) Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 294:G1181–G1190PubMedCrossRef
24.
go back to reference Meenan J, Grool TA, Hommes DW, Dijkhuizen S, Ten Kate FJ, Wood M, Whittaker M, Tytgat GN, Van Deventer SJ (1996) Lexipafant (BB-882), a platelet activating factor receptor antagonist, ameliorates mucosal inflammation in an animal model of colitis. Eur J Gastroenterol Hepatol 8:569–573PubMedCrossRef Meenan J, Grool TA, Hommes DW, Dijkhuizen S, Ten Kate FJ, Wood M, Whittaker M, Tytgat GN, Van Deventer SJ (1996) Lexipafant (BB-882), a platelet activating factor receptor antagonist, ameliorates mucosal inflammation in an animal model of colitis. Eur J Gastroenterol Hepatol 8:569–573PubMedCrossRef
25.
go back to reference Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, Soares PM, Vale ML, Souza MH, Cunha FQ, Ribeiro RA (2008) Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol 61:775–784PubMedCrossRef Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, Soares PM, Vale ML, Souza MH, Cunha FQ, Ribeiro RA (2008) Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol 61:775–784PubMedCrossRef
26.
go back to reference Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF (1999) Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol Gastrointest Liver Physiol 277:G810–G818 Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF (1999) Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol Gastrointest Liver Physiol 277:G810–G818
27.
go back to reference Moreno SE, Alves-Filho JC, Rios-Santos F, Silva JS, Ferreira SH, Cunha FQ, Teixeira MM (2006) Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J Immunol 177:1264–1271PubMed Moreno SE, Alves-Filho JC, Rios-Santos F, Silva JS, Ferreira SH, Cunha FQ, Teixeira MM (2006) Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J Immunol 177:1264–1271PubMed
28.
go back to reference Muguruma K, Gray PW, Tjoelker LW, Johnston JM (1997) The central role of PAF in necrotizing enterocolitis development. Adv Exp Med Biol 407:379–382PubMed Muguruma K, Gray PW, Tjoelker LW, Johnston JM (1997) The central role of PAF in necrotizing enterocolitis development. Adv Exp Med Biol 407:379–382PubMed
29.
go back to reference Orazi A, Du X, Yang Z, Kashai M, Williams DA (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 75:33–42PubMed Orazi A, Du X, Yang Z, Kashai M, Williams DA (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 75:33–42PubMed
30.
go back to reference Pritchard DM, Jackman A, Potten CS, Hickman JA (1998) Chemically-induced apoptosis: p21 and p53 as determinants of enterotoxin activity. Toxicol Lett 102–103:19–27PubMedCrossRef Pritchard DM, Jackman A, Potten CS, Hickman JA (1998) Chemically-induced apoptosis: p21 and p53 as determinants of enterotoxin activity. Toxicol Lett 102–103:19–27PubMedCrossRef
31.
go back to reference Qu X, Huang L, Burthart T, Crawford SE, Caplan MS, Hsueh W (1996) Endotoxin induces PAF production in the rat ileum: quantitation of tissue PAF by an improved method. Prostaglandins 51:249–262PubMedCrossRef Qu X, Huang L, Burthart T, Crawford SE, Caplan MS, Hsueh W (1996) Endotoxin induces PAF production in the rat ileum: quantitation of tissue PAF by an improved method. Prostaglandins 51:249–262PubMedCrossRef
32.
go back to reference Ribeiro RA, Flores CA, Cunha FQ, Ferreira SH (1991) IL-8 causes in vivo neutrophil migration by a cell-dependent mechanism. Immunology 73:472–477PubMed Ribeiro RA, Flores CA, Cunha FQ, Ferreira SH (1991) IL-8 causes in vivo neutrophil migration by a cell-dependent mechanism. Immunology 73:472–477PubMed
33.
go back to reference Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ (1995) Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115:1265–1275PubMed Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ (1995) Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115:1265–1275PubMed
34.
go back to reference Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63:91–98PubMedCrossRef Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63:91–98PubMedCrossRef
35.
go back to reference Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced tomato toxicity. Oral Oncol 34:39–43PubMedCrossRef Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced tomato toxicity. Oral Oncol 34:39–43PubMedCrossRef
36.
go back to reference Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025PubMedCrossRef Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025PubMedCrossRef
37.
go back to reference Souza DG, Fagundes CT, Sousa LP, Amaral FA, Souza RS, Souza AL, Kroon EG, Sachs D, Cunha FQ, Bukin E, Atrasheuskaya A, Ignatyev G, Teixeira MM (2009) Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc Natl Acad Sci USA 106:14138–14143PubMedCrossRef Souza DG, Fagundes CT, Sousa LP, Amaral FA, Souza RS, Souza AL, Kroon EG, Sachs D, Cunha FQ, Bukin E, Atrasheuskaya A, Ignatyev G, Teixeira MM (2009) Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc Natl Acad Sci USA 106:14138–14143PubMedCrossRef
38.
go back to reference Souza DG, Pinho V, Soares AC, Shimizu T, Ishii S, Teixeira MM (2003) Role of PAF receptors during intestinal ischemia and reperfusion injury. A comparative study between PAF receptor-deficient mice and PAF receptor antagonist treatment. Br J Pharmacol 139:733–740PubMedCrossRef Souza DG, Pinho V, Soares AC, Shimizu T, Ishii S, Teixeira MM (2003) Role of PAF receptors during intestinal ischemia and reperfusion injury. A comparative study between PAF receptor-deficient mice and PAF receptor antagonist treatment. Br J Pharmacol 139:733–740PubMedCrossRef
39.
go back to reference Strater J, Wellisch I, Riedl S, Walczak H, Koretz K, Tandara A, Krammer PH, Moller P (1997) CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113:160PubMedCrossRef Strater J, Wellisch I, Riedl S, Walczak H, Koretz K, Tandara A, Krammer PH, Moller P (1997) CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113:160PubMedCrossRef
40.
go back to reference Sun XM, Hsueh W (1988) Bowel necrosis induced by tumor necrosis factor in rats is mediated by platelet-activating factor. J Clin Invest 81:1328–1331PubMedCrossRef Sun XM, Hsueh W (1988) Bowel necrosis induced by tumor necrosis factor in rats is mediated by platelet-activating factor. J Clin Invest 81:1328–1331PubMedCrossRef
41.
go back to reference Venkatesha RT, Ahamed J, Nuesch C, Zaidi AK, Ali H (2004) Platelet-activating factor induced chemokine gene expression requires NF-kappaB activation and Ca2þ/calcineurin signaling pathways. Inhibition by receptor phosphorylation and beta-arrestin recruitment. J Biol Chem 279:44606–44612PubMedCrossRef Venkatesha RT, Ahamed J, Nuesch C, Zaidi AK, Ali H (2004) Platelet-activating factor induced chemokine gene expression requires NF-kappaB activation and Ca2þ/calcineurin signaling pathways. Inhibition by receptor phosphorylation and beta-arrestin recruitment. J Biol Chem 279:44606–44612PubMedCrossRef
Metadata
Title
Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice
Authors
Pedro M. G. Soares
Roberto C. P. Lima-Junior
José Maurício S. C. Mota
Priscilla F. C. Justino
Gerly Anne C. Brito
Ronaldo A. Ribeiro
Fernando Q. Cunha
Marcellus H. L. P. Souza
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 3/2011
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-010-1540-5

Other articles of this Issue 3/2011

Cancer Chemotherapy and Pharmacology 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine