Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 2/2011

01-08-2011 | Original Article

Antitumor effects of (S)-HDAC42, a phenylbutyrate-derived histone deacetylase inhibitor, in multiple myeloma cells

Authors: Li-Yuan Bai, Hany A. Omar, Chang-Fang Chiu, Zeng-Pang Chi, Jing-Lan Hu, Jing-Ru Weng

Published in: Cancer Chemotherapy and Pharmacology | Issue 2/2011

Login to get access

Abstract

Purpose

Epigenetic agents are among the newly targeted therapeutic strategies being studied with intense interest for patients with multiple myeloma. Here, we demonstrate the antitumor activity of a phenylbutyrate-based histone deacetylase (HDAC) inhibitor, (S)-HDAC42, and identify its possible targets in myeloma cells.

Methods

The antiproliferative effect of (S)-HDAC42 was compared with suberoylanilide hydroxamic acid (SAHA) in three myeloma cell lines, IM-9, RPMI-8226, and U266. Flow cytometry and terminal transferase dUTP nick-end labeling (TUNEL) assay were used to demonstrate the induction of apoptosis by (S)-HDAC42. Moreover, the proposed mechanisms of action, such as modulation of Akt, NF-κB pathway, and cell cycle–related proteins, were investigated by western blotting.

Results

(S)-HDAC42 exhibited four- to sevenfold higher potency relative to SAHA in suppressing myeloma cell viabilities. The apoptotic effect induced by (S)-HDAC42 was through both intrinsic and extrinsic pathways, as evidenced by increased cleavage of caspase-3, caspase-8, and caspase-9 and release of cytochrome c from mitochondria. In addition to HDAC inhibition, (S)-HDAC42 also disturbed signaling pathways governing cell survival, including downregulating Akt phosphorylation and NF-κB signaling. The modulation of cell cycle–related proteins by (S)-HDAC42 suggested its inhibitory effect on cell cycle propagation.

Conclusion

These data suggest the translational value of (S)-HDAC42 in developing new therapeutic strategies for myeloma, which warrants further investigations.
Literature
1.
go back to reference Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K (2007) New drugs for myeloma. Oncologist 12:664–689PubMedCrossRef Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K (2007) New drugs for myeloma. Oncologist 12:664–689PubMedCrossRef
2.
go back to reference Smith EM, Boyd K, Davies FE (2009) The potential role of epigenetic therapy in multiple myeloma. Br J Hematol 148:702–713CrossRef Smith EM, Boyd K, Davies FE (2009) The potential role of epigenetic therapy in multiple myeloma. Br J Hematol 148:702–713CrossRef
3.
go back to reference Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF (2008) New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 9:1157–1165PubMedCrossRef Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF (2008) New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 9:1157–1165PubMedCrossRef
4.
go back to reference Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25PubMedCrossRef Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25PubMedCrossRef
5.
go back to reference Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202PubMedCrossRef Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202PubMedCrossRef
6.
go back to reference Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784PubMedCrossRef Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784PubMedCrossRef
7.
go back to reference Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304PubMedCrossRef Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304PubMedCrossRef
8.
go back to reference Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93:5705–5708PubMedCrossRef Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93:5705–5708PubMedCrossRef
9.
go back to reference Campbell RA, Sanchez E, Steinberg J, Shalitin D, Li ZW, Chen H, Berenson JR (2009) Vorinostat enhances the antimyeloma effects of melphalan and bortezomib. Eur J Hematol 84:201–211CrossRef Campbell RA, Sanchez E, Steinberg J, Shalitin D, Li ZW, Chen H, Berenson JR (2009) Vorinostat enhances the antimyeloma effects of melphalan and bortezomib. Eur J Hematol 84:201–211CrossRef
10.
go back to reference Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C, Rizvi S (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31PubMedCrossRef Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C, Rizvi S (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31PubMedCrossRef
11.
go back to reference Richardson PG, Mitsiades CS, Colson K, Reilly E, McBride L, Chiao J, Sun L, Ricker JL, Rizvi S, Oerth C, Atkins B, Fearen I, Anderson KC, Siegel DS (2008) Final results of a phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 49:502–507PubMedCrossRef Richardson PG, Mitsiades CS, Colson K, Reilly E, McBride L, Chiao J, Sun L, Ricker JL, Rizvi S, Oerth C, Atkins B, Fearen I, Anderson KC, Siegel DS (2008) Final results of a phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 49:502–507PubMedCrossRef
12.
go back to reference Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O, Harris C, Zwiebel J, Wright JJ, Espinoza-Delgado I, Baer MR, Holleran JL, Egorin MJ, Grant S (2009) Phase I trial of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 15:5250–5257PubMedCrossRef Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O, Harris C, Zwiebel J, Wright JJ, Espinoza-Delgado I, Baer MR, Holleran JL, Egorin MJ, Grant S (2009) Phase I trial of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 15:5250–5257PubMedCrossRef
13.
go back to reference Deleu S, Lemaire M, Arts J, Menu E, Van Valckenborgh E, King P, Vande Broek I, De Raeve H, Van Camp B, Croucher P, Vanderkerken K (2009) The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 23:1894–1903PubMedCrossRef Deleu S, Lemaire M, Arts J, Menu E, Van Valckenborgh E, King P, Vande Broek I, De Raeve H, Van Camp B, Croucher P, Vanderkerken K (2009) The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 23:1894–1903PubMedCrossRef
14.
go back to reference Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Baumann P (2010) The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Hematol 149:518–528CrossRef Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Baumann P (2010) The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Hematol 149:518–528CrossRef
15.
go back to reference Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, Hager JH, Lentzsch S (2008) KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther 7:1494–1505PubMedCrossRef Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, Hager JH, Lentzsch S (2008) KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther 7:1494–1505PubMedCrossRef
16.
go back to reference Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Turkmen S, Sezer O (2009) Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Hematol 84:337–344CrossRef Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Turkmen S, Sezer O (2009) Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Hematol 84:337–344CrossRef
17.
go back to reference Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N, Rambaldi A (2010) A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 89:185–190PubMedCrossRef Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N, Rambaldi A (2010) A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 89:185–190PubMedCrossRef
18.
go back to reference Kulp SK, Chen CS, Wang DS, Chen CY, Chen CS (2006) Antitumor effects of novel phenylbutyrate-based histone deacetylase inhibitors, (S)-HDAC-42, in prostate cancer. Clin Cancer Res 12:5199–5206PubMedCrossRef Kulp SK, Chen CS, Wang DS, Chen CY, Chen CS (2006) Antitumor effects of novel phenylbutyrate-based histone deacetylase inhibitors, (S)-HDAC-42, in prostate cancer. Clin Cancer Res 12:5199–5206PubMedCrossRef
19.
go back to reference Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS (2008) OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 68:3999–4009PubMedCrossRef Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS (2008) OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 68:3999–4009PubMedCrossRef
20.
go back to reference Yang YT, Balch C, Kulp SK, Mand MR, Nephew KP, Chen CS (2009) A rationally designed histone deacetylase inhibitor with distinct antitumor activity against ovarian cancer. Neoplasia 11:552–563PubMed Yang YT, Balch C, Kulp SK, Mand MR, Nephew KP, Chen CS (2009) A rationally designed histone deacetylase inhibitor with distinct antitumor activity against ovarian cancer. Neoplasia 11:552–563PubMed
21.
go back to reference Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, Chen CS (2007) Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 46:1119–1130PubMedCrossRef Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, Chen CS (2007) Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 46:1119–1130PubMedCrossRef
22.
go back to reference Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280:38879–38887PubMedCrossRef Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280:38879–38887PubMedCrossRef
23.
go back to reference Lu Q, Wang DS, Chen CS, Hu YD, Chen CS (2005) Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48:5530–5535PubMedCrossRef Lu Q, Wang DS, Chen CS, Hu YD, Chen CS (2005) Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48:5530–5535PubMedCrossRef
24.
go back to reference Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647PubMedCrossRef Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647PubMedCrossRef
25.
go back to reference Hideshima T, Neri P, Tassone P, Yasui H, Ishitsuka K, Raje N, Chauhan D, Podar K, Mitsiades C, Dang L, Munshi N, Richardson P, Schenkein D, Anderson KC (2006) MLN120B, a novel IκB kinase β inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 12:5887–5894PubMedCrossRef Hideshima T, Neri P, Tassone P, Yasui H, Ishitsuka K, Raje N, Chauhan D, Podar K, Mitsiades C, Dang L, Munshi N, Richardson P, Schenkein D, Anderson KC (2006) MLN120B, a novel IκB kinase β inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 12:5887–5894PubMedCrossRef
26.
go back to reference Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM (2007) Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130PubMedCrossRef Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM (2007) Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130PubMedCrossRef
27.
go back to reference Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062PubMedCrossRef Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062PubMedCrossRef
28.
go back to reference Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J, Singhal S, Ghobrial I, Stephenson J, Mehta J, Colson K, Francis D, Kendall T, Obadike N, Sullivan K, Martin J, Hideshima T, Lai L, Sportelli P, Gardner L, Birch R, Henderson IC, Anderson K (2007) Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. Blood 110:1164 (abstr)CrossRef Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J, Singhal S, Ghobrial I, Stephenson J, Mehta J, Colson K, Francis D, Kendall T, Obadike N, Sullivan K, Martin J, Hideshima T, Lai L, Sportelli P, Gardner L, Birch R, Henderson IC, Anderson K (2007) Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. Blood 110:1164 (abstr)CrossRef
Metadata
Title
Antitumor effects of (S)-HDAC42, a phenylbutyrate-derived histone deacetylase inhibitor, in multiple myeloma cells
Authors
Li-Yuan Bai
Hany A. Omar
Chang-Fang Chiu
Zeng-Pang Chi
Jing-Lan Hu
Jing-Ru Weng
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 2/2011
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-010-1501-z

Other articles of this Issue 2/2011

Cancer Chemotherapy and Pharmacology 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine