Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 3/2020

01-03-2020 | Original Article

Anatomy and white matter connections of the lateral occipital cortex

Authors: Ali H. Palejwala, Kyle P. O’Connor, Panayiotis Pelargos, Robert G. Briggs, Camille K. Milton, Andrew K. Conner, Ty M. Milligan, Daniel L. O’Donoghue, Chad A. Glenn, Michael E. Sughrue

Published in: Surgical and Radiologic Anatomy | Issue 3/2020

Login to get access

Abstract

Purpose

White matter tracts link different regions of the brain, and the known functions of those interconnected regions may offer clues about the roles that white matter tracts play in information relay. The authors of this report discuss the structure and function of the lateral occipital lobe and how the lateral occipital lobe communicates with other regions via white matter tracts.

Methods

The authors used generalized q-sampling imaging and cadaveric brain dissections to uncover the subcortical white matter connections of the lateral occipital lobe. The authors created GQI of ten healthy controls and dissected ten cadaveric brains.

Results

The middle longitudinal fasciculus, vertical occipital fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiations, and a diverse array of U-shaped fibers connect the lateral occipital lobe to itself, parts of the temporal, parietal, and medial occipital cortices. The complex functional processes attributed to the lateral occipital lobe, including object recognition, facial recognition, and motion perception are likely related to the subcortical white matter tracts described within this study.

Conclusions

There was good concordance between the white matter tracts generated using GQI and the white matter tracts that were found after dissection of the cadaveric brains. This article presents the anatomic connections of the lateral occipital lobe and discusses the associated functions.
Literature
1.
go back to reference Alves RV, Ribas GC, Parraga RG et al (2012) The occipital lobe convexity sulci and gyri. J Neurosurg 116:1014–1023PubMed Alves RV, Ribas GC, Parraga RG et al (2012) The occipital lobe convexity sulci and gyri. J Neurosurg 116:1014–1023PubMed
2.
go back to reference Amedi A, Jacobson G, Hendler T et al (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212PubMed Amedi A, Jacobson G, Hendler T et al (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212PubMed
3.
go back to reference Amedi A, Malach R, Hendler T et al (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324PubMed Amedi A, Malach R, Hendler T et al (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324PubMed
4.
go back to reference Ardekani BA, Tabesh A, Sevy S et al (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9PubMedPubMedCentral Ardekani BA, Tabesh A, Sevy S et al (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9PubMedPubMedCentral
5.
go back to reference Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 1: introduction, methods, and significance. Oper Neurosurg 15:1–9 Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 1: introduction, methods, and significance. Oper Neurosurg 15:1–9
6.
go back to reference Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 9: the occipital lobe. Oper Neurosurg (Hagerstown) 15:372–406 Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 9: the occipital lobe. Oper Neurosurg (Hagerstown) 15:372–406
7.
go back to reference Bankson BB, Hebart MN, Groen IIA et al (2018) The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks. Neuroimage 178:172–182PubMed Bankson BB, Hebart MN, Groen IIA et al (2018) The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks. Neuroimage 178:172–182PubMed
8.
go back to reference Bernard F, Lemée J-M, Ter Minassian A et al (2018) Right hemisphere cognitive functions: from clinical and anatomic bases to brain mapping during awake craniotomy part i: clinical and functional anatomy. World Neurosurg 118:348–359PubMed Bernard F, Lemée J-M, Ter Minassian A et al (2018) Right hemisphere cognitive functions: from clinical and anatomic bases to brain mapping during awake craniotomy part i: clinical and functional anatomy. World Neurosurg 118:348–359PubMed
9.
go back to reference Bernstein M, Erez Y, Blank I et al (2018) An integrated neural framework for dynamic and static face processing. Sci Rep 8:7036PubMedPubMedCentral Bernstein M, Erez Y, Blank I et al (2018) An integrated neural framework for dynamic and static face processing. Sci Rep 8:7036PubMedPubMedCentral
10.
go back to reference Briggs RG, Conner AK, Sali G et al (2018) A connectomic atlas of the human cerebrum-chapter 16: tractographic description of the vertical occipital fasciculus. Oper Neurosurg (Hagerstown) 15:456–461 Briggs RG, Conner AK, Sali G et al (2018) A connectomic atlas of the human cerebrum-chapter 16: tractographic description of the vertical occipital fasciculus. Oper Neurosurg (Hagerstown) 15:456–461
11.
12.
go back to reference Budisavljevic S, Dell’acqua F, Castiello U (2018) Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex 103:224–239PubMed Budisavljevic S, Dell’acqua F, Castiello U (2018) Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex 103:224–239PubMed
13.
go back to reference De Witt Hamer PC, Moritz-Gasser S, Gatignol P et al (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32:962–973PubMed De Witt Hamer PC, Moritz-Gasser S, Gatignol P et al (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32:962–973PubMed
14.
go back to reference Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574 Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574
15.
go back to reference Giovannelli F, Giganti F, Righi S et al (2016) Audio-visual integration effect in lateral occipital cortex during an object recognition task: an interference pilot study. Brain Stimul 9:574–576PubMed Giovannelli F, Giganti F, Righi S et al (2016) Audio-visual integration effect in lateral occipital cortex during an object recognition task: an interference pilot study. Brain Stimul 9:574–576PubMed
16.
go back to reference Goebel R, Muckli L, Zanella FE et al (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res 41:1459–1474PubMed Goebel R, Muckli L, Zanella FE et al (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res 41:1459–1474PubMed
17.
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed
18.
go back to reference Goodale MA, Milner AD (2018) Two visual pathways where have they taken us and where will they lead in future? Cortex 98:283–292PubMed Goodale MA, Milner AD (2018) Two visual pathways where have they taken us and where will they lead in future? Cortex 98:283–292PubMed
19.
go back to reference Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422PubMed Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422PubMed
20.
go back to reference Grill-Spector K, Kushnir T, Edelman S et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMed Grill-Spector K, Kushnir T, Edelman S et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMed
21.
go back to reference Haxby JV, Grady CL, Horwitz B et al (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci 88:1621PubMed Haxby JV, Grady CL, Horwitz B et al (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci 88:1621PubMed
22.
go back to reference Hebart MN, Hesselmann G (2012) What visual information is processed in the human dorsal stream? J Neurosci 32:8107–8109PubMedPubMedCentral Hebart MN, Hesselmann G (2012) What visual information is processed in the human dorsal stream? J Neurosci 32:8107–8109PubMedPubMedCentral
23.
go back to reference James TW, Culham J, Humphrey GK et al (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475PubMed James TW, Culham J, Humphrey GK et al (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475PubMed
24.
go back to reference James TW, Humphrey GK, Gati JS et al (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714PubMed James TW, Humphrey GK, Gati JS et al (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714PubMed
25.
go back to reference Kanwisher N, Mcdermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedPubMedCentral Kanwisher N, Mcdermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedPubMedCentral
26.
go back to reference Kourtzi Z, Erb M, Grodd W et al (2003) Representation of the perceived 3-D object shape in the human lateral occipital complex. Cerebral Cortex 13:911–920PubMed Kourtzi Z, Erb M, Grodd W et al (2003) Representation of the perceived 3-D object shape in the human lateral occipital complex. Cerebral Cortex 13:911–920PubMed
27.
go back to reference Lacey S, Sathian K (2014) Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 5:730PubMedPubMedCentral Lacey S, Sathian K (2014) Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 5:730PubMedPubMedCentral
28.
go back to reference Lemee JM, Bernard F, Ter Minassian A et al (2018) Right Hemisphere Cognitive Functions: from Clinical and Anatomical Bases to Brain Mapping During Awake Craniotomy. Part II: Neuropsychological Tasks and Brain Mapping. World Neurosurg 118:360–367PubMed Lemee JM, Bernard F, Ter Minassian A et al (2018) Right Hemisphere Cognitive Functions: from Clinical and Anatomical Bases to Brain Mapping During Awake Craniotomy. Part II: Neuropsychological Tasks and Brain Mapping. World Neurosurg 118:360–367PubMed
29.
go back to reference Lerner Y, Hendler T, Ben-Bashat D et al (2001) A Hierarchical Axis of Object Processing Stages in the Human Visual Cortex. Cereb Cortex 11:287–297PubMed Lerner Y, Hendler T, Ben-Bashat D et al (2001) A Hierarchical Axis of Object Processing Stages in the Human Visual Cortex. Cereb Cortex 11:287–297PubMed
30.
go back to reference Makris N, Preti MG, Asami T et al (2013) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218:951–968PubMed Makris N, Preti MG, Asami T et al (2013) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218:951–968PubMed
31.
go back to reference Makris N, Preti MG, Wassermann D et al (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7:335–352PubMed Makris N, Preti MG, Wassermann D et al (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7:335–352PubMed
32.
go back to reference Malach R, Reppas JB, Benson RR et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMed Malach R, Reppas JB, Benson RR et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMed
33.
go back to reference Maldonado IL, De Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45PubMedPubMedCentral Maldonado IL, De Champfleur NM, Velut S et al (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45PubMedPubMedCentral
34.
go back to reference Margalit E, Shah MP, Tjan BS et al (2016) The Lateral Occipital Complex shows no net response to object familiarity. J Vis 16:3–3PubMedPubMedCentral Margalit E, Shah MP, Tjan BS et al (2016) The Lateral Occipital Complex shows no net response to object familiarity. J Vis 16:3–3PubMedPubMedCentral
35.
go back to reference Menjot De Champfleur N, Lima Maldonado I, Moritz-Gasser S et al (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157PubMed Menjot De Champfleur N, Lima Maldonado I, Moritz-Gasser S et al (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82:151–157PubMed
37.
go back to reference Niemeier M, Goltz HC, Kuchinad A et al (2005) A Contralateral Preference in the Lateral Occipital Area: sensory and Attentional Mechanisms. Cereb Cortex 15:325–331PubMed Niemeier M, Goltz HC, Kuchinad A et al (2005) A Contralateral Preference in the Lateral Occipital Area: sensory and Attentional Mechanisms. Cereb Cortex 15:325–331PubMed
38.
go back to reference Oishi H, Takemura H, Aoki SC et al (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci USA 115:12289–12294PubMed Oishi H, Takemura H, Aoki SC et al (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci USA 115:12289–12294PubMed
39.
go back to reference Panesar SS, Yeh FC, Jacquesson T et al (2018) A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus. Front Neuroanat 12:47PubMedPubMedCentral Panesar SS, Yeh FC, Jacquesson T et al (2018) A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus. Front Neuroanat 12:47PubMedPubMedCentral
40.
go back to reference Rokem A, Takemura H, Bock AS et al (2017) The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J Vis 17:4PubMedPubMedCentral Rokem A, Takemura H, Bock AS et al (2017) The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J Vis 17:4PubMedPubMedCentral
41.
go back to reference Rosa MG, Palmer SM, Gamberini M et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29:4548–4563PubMedPubMedCentral Rosa MG, Palmer SM, Gamberini M et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29:4548–4563PubMedPubMedCentral
42.
go back to reference Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55:301–312PubMed Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55:301–312PubMed
43.
go back to reference Smith SM, Beckmann CF, Andersson J et al (2013) Resting-state fMRI in the Human Connectome Project. NeuroImage 80:144–168PubMedPubMedCentral Smith SM, Beckmann CF, Andersson J et al (2013) Resting-state fMRI in the Human Connectome Project. NeuroImage 80:144–168PubMedPubMedCentral
44.
45.
go back to reference Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cognit Neurosci 23:4122–4137 Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cognit Neurosci 23:4122–4137
46.
go back to reference Thiebaut De Schotten M, Dell’acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246PubMed Thiebaut De Schotten M, Dell’acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246PubMed
47.
go back to reference Tootell RB, Reppas JB, Kwong KK et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedPubMedCentral Tootell RB, Reppas JB, Kwong KK et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedPubMedCentral
48.
go back to reference Wall MB, Lingnau A, Ashida H et al (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757PubMed Wall MB, Lingnau A, Ashida H et al (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757PubMed
49.
go back to reference Wang Y, Fernandez-Miranda JC, Verstynen T et al (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356PubMed Wang Y, Fernandez-Miranda JC, Verstynen T et al (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356PubMed
50.
go back to reference Wu Y, Sun D, Wang Y et al (2016) Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking. Front Neuroanat 10:88PubMedPubMedCentral Wu Y, Sun D, Wang Y et al (2016) Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking. Front Neuroanat 10:88PubMedPubMedCentral
51.
go back to reference Wu Y, Sun D, Wang Y et al (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159PubMed Wu Y, Sun D, Wang Y et al (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159PubMed
52.
go back to reference Wysiadecki G, Clarke E, Polguj M et al (2018) Klingler’s method of brain dissection: review of the technique including its usefulness in practical neuroanatomy teaching, neurosurgery and neuroimaging. Folia Morphol 78:455–466 Wysiadecki G, Clarke E, Polguj M et al (2018) Klingler’s method of brain dissection: review of the technique including its usefulness in practical neuroanatomy teaching, neurosurgery and neuroimaging. Folia Morphol 78:455–466
53.
go back to reference Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111:E5214–E5223PubMed Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111:E5214–E5223PubMed
54.
go back to reference Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635PubMed Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635PubMed
Metadata
Title
Anatomy and white matter connections of the lateral occipital cortex
Authors
Ali H. Palejwala
Kyle P. O’Connor
Panayiotis Pelargos
Robert G. Briggs
Camille K. Milton
Andrew K. Conner
Ty M. Milligan
Daniel L. O’Donoghue
Chad A. Glenn
Michael E. Sughrue
Publication date
01-03-2020
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 3/2020
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-019-02371-z

Other articles of this Issue 3/2020

Surgical and Radiologic Anatomy 3/2020 Go to the issue