Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 10/2017

01-10-2017 | Original Article

The hippocampus: detailed assessment of normative two-dimensional measurements, signal intensity, and subfield conspicuity on routine 3T T2-weighted sequences

Authors: Erik H. Middlebrooks, Ronald G. Quisling, Michael A. King, Paul R. Carney, Steven Roper, Luis M. Colon-Perez, Thomas H. Mareci

Published in: Surgical and Radiologic Anatomy | Issue 10/2017

Login to get access

Abstract

Purpose

The hippocampus has a critical role in many common disease processes. Currently, routine 3 Tesla structural MRI is a mainstay of clinical diagnosis. The goal of our study is to evaluate the normal variability in size and/or conspicuity of the hippocampal subcomponents in routine clinical 3 Tesla high-resolution T2-weighted images to provide a basis for better defining pathological derangements. Additionally, we utilize diffusion data acquired from a 17.6 Tesla MRI of the hippocampus as a benchmark to better illustrate these subcomponents.

Methods

The hippocampus was retrospectively assessed on 104 clinically normal patients undergoing coronal T2-weighted imaging. The conspicuity of the majority of hippocampal subcomponents was assessed in each portion of the hippocampus. Additionally, easily applicable cross-sectional measurements and signal intensities were obtained to evaluate the range of normal, as well as inter- and intra-subject variability.

Results

The normal range of cross-sectional measurements of the hippocampal subcomponents was calculated. There was minimal side-to-side variability in cross-sectional measurements of hippocampal subcomponents (< 5%) with the exception of the subiculum (R>L by 8.3%) and the CA4/DG (R>L by 5.8%). The internal architecture showed high variability in visibility of subcomponents between different segments of the hippocampus.

Conclusions

Confident clinical assessment of the hippocampus requires a thorough knowledge of hippocampal size and signal, but also the internal architecture expected to be seen. The data provided in this study will provide the reader with vital information necessary for distinguishing a normal from abnormal exam.
Literature
1.
go back to reference Adachi M, Kawakatsu S, Hosoya T, Otani K, Honma T, Shibata A, Sugai Y (2003) Morphology of the inner structure of the hippocampal formation in Alzheimer disease. AJNR Am J Neuroradiol 24:1575–1581PubMed Adachi M, Kawakatsu S, Hosoya T, Otani K, Honma T, Shibata A, Sugai Y (2003) Morphology of the inner structure of the hippocampal formation in Alzheimer disease. AJNR Am J Neuroradiol 24:1575–1581PubMed
3.
go back to reference Bobinski M, de Leon MJ, Tarnawski M, Wegiel J, Reisberg B, Miller DC, Wisniewski HM (1998) Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease. Brain Res 805:267–269CrossRefPubMed Bobinski M, de Leon MJ, Tarnawski M, Wegiel J, Reisberg B, Miller DC, Wisniewski HM (1998) Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease. Brain Res 805:267–269CrossRefPubMed
4.
go back to reference Bote RP, Blázquez-Llorca L, Fernández-Gil MA, Alonso-Nanclares L, Muñoz A, de Felipe J (2008) Hippocampal sclerosis: histopathology substrate and magnetic resonance imaging. Semin Ultrasound CT MR 29:2–14CrossRefPubMed Bote RP, Blázquez-Llorca L, Fernández-Gil MA, Alonso-Nanclares L, Muñoz A, de Felipe J (2008) Hippocampal sclerosis: histopathology substrate and magnetic resonance imaging. Semin Ultrasound CT MR 29:2–14CrossRefPubMed
5.
go back to reference Briellmann RS, Syngeniotis A, Jackson GD (2001) Comparison of hippocampal volumetry at 1.5 T and at 3 T. Epilepsia 42:1021–1024CrossRefPubMed Briellmann RS, Syngeniotis A, Jackson GD (2001) Comparison of hippocampal volumetry at 1.5 T and at 3 T. Epilepsia 42:1021–1024CrossRefPubMed
6.
go back to reference Chakeres DW, Whitaker CDS, Dashner RA, Scharre DW, Beversdorf DQ, Raychaudhury A, Schmalbrock P (2005) High-resolution 8 T imaging of the formalin-fixed normal human hippocampus. Clin Anat 18:88–91. doi:10.1002/ca.10232 CrossRefPubMed Chakeres DW, Whitaker CDS, Dashner RA, Scharre DW, Beversdorf DQ, Raychaudhury A, Schmalbrock P (2005) High-resolution 8 T imaging of the formalin-fixed normal human hippocampus. Clin Anat 18:88–91. doi:10.​1002/​ca.​10232 CrossRefPubMed
8.
go back to reference Coras R, Milesi G, Zucca I, Mastropietro A, Scotti A, Figini M, Mühlebner A, Hess A, Graf W, Tringali G, Blümcke I, Villani F, Didato G, Frassoni C, Spreafico R, Garbelli R (2014) 7 T MRI features in control human hippocampus and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia 55:2003–2016. doi:10.1111/epi.12828 CrossRefPubMed Coras R, Milesi G, Zucca I, Mastropietro A, Scotti A, Figini M, Mühlebner A, Hess A, Graf W, Tringali G, Blümcke I, Villani F, Didato G, Frassoni C, Spreafico R, Garbelli R (2014) 7 T MRI features in control human hippocampus and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia 55:2003–2016. doi:10.​1111/​epi.​12828 CrossRefPubMed
9.
go back to reference Demeter S, Rosene DL, van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233:30–47. doi:10.1002/cne.902330104 CrossRefPubMed Demeter S, Rosene DL, van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233:30–47. doi:10.​1002/​cne.​902330104 CrossRefPubMed
10.
11.
go back to reference Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 T. AJNR Am J Neuroradiol 23:1313–1321PubMed Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 T. AJNR Am J Neuroradiol 23:1313–1321PubMed
12.
go back to reference Furshpan EJ, Potter DD (1989) Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron 3:199–207CrossRefPubMed Furshpan EJ, Potter DD (1989) Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron 3:199–207CrossRefPubMed
13.
go back to reference Gilmore RL, Childress MD, Leonard C, Quisling R, Roper S, Eisenschenk S, Mahoney M (1995) Hippocampal volumetrics differentiate patients with temporal lobe epilepsy and extratemporal lobe epilepsy. Arch Neurol 52:819–824CrossRefPubMed Gilmore RL, Childress MD, Leonard C, Quisling R, Roper S, Eisenschenk S, Mahoney M (1995) Hippocampal volumetrics differentiate patients with temporal lobe epilepsy and extratemporal lobe epilepsy. Arch Neurol 52:819–824CrossRefPubMed
15.
go back to reference Hanamiya M, Korogi Y, Kakeda S, Ohnari N, Kamada K, Moriya J, Sato T, Kitajima M, Akamatsu N, Tsuji S (2009) Partial loss of hippocampal striation in medial temporal lobe epilepsy: pilot evaluation with high-spatial-resolution T2-weighted MR imaging at 3.0 T. Radiology 251:873–881. doi:10.1148/radiol.2513080445 CrossRefPubMed Hanamiya M, Korogi Y, Kakeda S, Ohnari N, Kamada K, Moriya J, Sato T, Kitajima M, Akamatsu N, Tsuji S (2009) Partial loss of hippocampal striation in medial temporal lobe epilepsy: pilot evaluation with high-spatial-resolution T2-weighted MR imaging at 3.0 T. Radiology 251:873–881. doi:10.​1148/​radiol.​2513080445 CrossRefPubMed
17.
go back to reference Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkänen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659–671PubMed Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkänen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659–671PubMed
18.
go back to reference Kasasbeh A, Hwang EC, Steger-May K, Bandt SK, Oberhelman A, Limbrick D, Miller-Thomas MM, Shimony JS, Smyth MD (2012) Association of magnetic resonance imaging identification of mesial temporal sclerosis with pathological diagnosis and surgical outcomes in children following epilepsy surgery. J Neurosurg Pediatr 9:552–561. doi:10.3171/2012.1.PEDS11447 CrossRefPubMed Kasasbeh A, Hwang EC, Steger-May K, Bandt SK, Oberhelman A, Limbrick D, Miller-Thomas MM, Shimony JS, Smyth MD (2012) Association of magnetic resonance imaging identification of mesial temporal sclerosis with pathological diagnosis and surgical outcomes in children following epilepsy surgery. J Neurosurg Pediatr 9:552–561. doi:10.​3171/​2012.​1.​PEDS11447 CrossRefPubMed
19.
go back to reference Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price DL (1987) Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 406:192–206CrossRefPubMed Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price DL (1987) Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 406:192–206CrossRefPubMed
20.
go back to reference Koliatsos VE, Martin LJ, Walker LC, Richardson RT, DeLong MR, Price DL (1988) Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Res 463:133–139CrossRefPubMed Koliatsos VE, Martin LJ, Walker LC, Richardson RT, DeLong MR, Price DL (1988) Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Res 463:133–139CrossRefPubMed
21.
go back to reference Kosel KC, van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213CrossRefPubMed Kosel KC, van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213CrossRefPubMed
23.
go back to reference Lucarelli RT, Peshock RM, McColl R, Hulsey K, Ayers C, Whittemore AR, King KS (2013) MR imaging of hippocampal asymmetry at 3 T in a multiethnic, population-based sample: results from the Dallas Heart Study. AJNR Am J Neuroradiol 34:752–757. doi:10.3174/ajnr.A3308 CrossRefPubMed Lucarelli RT, Peshock RM, McColl R, Hulsey K, Ayers C, Whittemore AR, King KS (2013) MR imaging of hippocampal asymmetry at 3 T in a multiethnic, population-based sample: results from the Dallas Heart Study. AJNR Am J Neuroradiol 34:752–757. doi:10.​3174/​ajnr.​A3308 CrossRefPubMed
24.
go back to reference Mumoli L, Labate A, Vasta R, Cherubini A, Ferlazzo E, Aguglia U, Quattrone A, Gambardella A (2013) Detection of hippocampal atrophy in patients with temporal lobe epilepsy: a 3-Tesla MRI shape. Epilepsy Behav EB 28:489–493. doi:10.1016/j.yebeh.2013.05.035 CrossRef Mumoli L, Labate A, Vasta R, Cherubini A, Ferlazzo E, Aguglia U, Quattrone A, Gambardella A (2013) Detection of hippocampal atrophy in patients with temporal lobe epilepsy: a 3-Tesla MRI shape. Epilepsy Behav EB 28:489–493. doi:10.​1016/​j.​yebeh.​2013.​05.​035 CrossRef
26.
go back to reference Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191:890–895. doi:10.2214/AJR.07.3933 CrossRefPubMed Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191:890–895. doi:10.​2214/​AJR.​07.​3933 CrossRefPubMed
27.
go back to reference Pitkänen A, Nissinen J, Nairismägi J, Lukasiuk K, Gröhn OHJ, Miettinen R, Kauppinen R (2002) Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Prog Brain Res 135:67–83. doi:10.1016/S0079-6123(02)35008-8 CrossRefPubMed Pitkänen A, Nissinen J, Nairismägi J, Lukasiuk K, Gröhn OHJ, Miettinen R, Kauppinen R (2002) Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Prog Brain Res 135:67–83. doi:10.​1016/​S0079-6123(02)35008-8 CrossRefPubMed
31.
go back to reference Thomas BP, Welch EB, Niederhauser BD, Whetsell WO, Anderson AW, Gore JC, Avison MJ, Creasy JL (2008) High-resolution 7 T MRI of the human hippocampus in vivo. J Magn Reson Imaging JMRI 28:1266–1272. doi:10.1002/jmri.21576 CrossRefPubMed Thomas BP, Welch EB, Niederhauser BD, Whetsell WO, Anderson AW, Gore JC, Avison MJ, Creasy JL (2008) High-resolution 7 T MRI of the human hippocampus in vivo. J Magn Reson Imaging JMRI 28:1266–1272. doi:10.​1002/​jmri.​21576 CrossRefPubMed
38.
go back to reference Yukie M (2000) Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282–298CrossRefPubMed Yukie M (2000) Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282–298CrossRefPubMed
39.
go back to reference Yushkevich PA, Avants BB, Pluta J, Das S, Minkoff D, Mechanic-Hamilton D, Glynn S, Pickup S, Liu W, Gee JC, Grossman M, Detre JA (2009) A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. NeuroImage 44:385–398. doi:10.1016/j.neuroimage.2008.08.042 CrossRefPubMed Yushkevich PA, Avants BB, Pluta J, Das S, Minkoff D, Mechanic-Hamilton D, Glynn S, Pickup S, Liu W, Gee JC, Grossman M, Detre JA (2009) A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. NeuroImage 44:385–398. doi:10.​1016/​j.​neuroimage.​2008.​08.​042 CrossRefPubMed
40.
go back to reference Yushkevich PA, Pluta JB, Wang H, Xie L, Ding SL, Gertje EC, Mancuso L, Kliot D, Das SR, Wolk DA (2015 Jan) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36(1):258–287. doi:10.1002/hbm.22627 CrossRefPubMed Yushkevich PA, Pluta JB, Wang H, Xie L, Ding SL, Gertje EC, Mancuso L, Kliot D, Das SR, Wolk DA (2015 Jan) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36(1):258–287. doi:10.​1002/​hbm.​22627 CrossRefPubMed
Metadata
Title
The hippocampus: detailed assessment of normative two-dimensional measurements, signal intensity, and subfield conspicuity on routine 3T T2-weighted sequences
Authors
Erik H. Middlebrooks
Ronald G. Quisling
Michael A. King
Paul R. Carney
Steven Roper
Luis M. Colon-Perez
Thomas H. Mareci
Publication date
01-10-2017
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 10/2017
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-017-1843-x

Other articles of this Issue 10/2017

Surgical and Radiologic Anatomy 10/2017 Go to the issue