Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 8/2012

01-10-2012 | Original Article

Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations

Authors: Mircea-Constantin Sora, Radu Jilavu, Petru Matusz

Published in: Surgical and Radiologic Anatomy | Issue 8/2012

Login to get access

Abstract

Purpose

The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction.

Methods

A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created.

Results

Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space.

Conclusions

The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.
Literature
1.
go back to reference An PC, Zhang M (1999) A technique for preserving the subarachnoid space and its contents in a natural state with different colours. J Int Soc Plastination 14:12–17 An PC, Zhang M (1999) A technique for preserving the subarachnoid space and its contents in a natural state with different colours. J Int Soc Plastination 14:12–17
2.
go back to reference Contouris N (1988) The human levator ani muscle. Advances in andrology. Carl Schirren Symposium. Diesbach Verlag, Berlin, pp 159–165 Contouris N (1988) The human levator ani muscle. Advances in andrology. Carl Schirren Symposium. Diesbach Verlag, Berlin, pp 159–165
3.
go back to reference de Barros N, Junqueira Rodrigues C, Junqueira Rodrigues A Jr, de Negri Germano MA, Guido Cerri G (2001) The value of teaching sectional anatomy to improve CT scan interpretation. Clin Anat 14:36–41PubMedCrossRef de Barros N, Junqueira Rodrigues C, Junqueira Rodrigues A Jr, de Negri Germano MA, Guido Cerri G (2001) The value of teaching sectional anatomy to improve CT scan interpretation. Clin Anat 14:36–41PubMedCrossRef
4.
go back to reference de Leval J (2003) Novel surgical technique for the treatment of female stress urinary incontinence: transobturator vaginal tape inside-out. Eur Urol 44:724–730PubMedCrossRef de Leval J (2003) Novel surgical technique for the treatment of female stress urinary incontinence: transobturator vaginal tape inside-out. Eur Urol 44:724–730PubMedCrossRef
5.
go back to reference Dev P, Montgomery K, Senger S, Heinrichs WL, Srivastava S, Waldron K (2002) Simulated medical learning environments on the internet. J Amer Med Informatics Assoc 9:437–447CrossRef Dev P, Montgomery K, Senger S, Heinrichs WL, Srivastava S, Waldron K (2002) Simulated medical learning environments on the internet. J Amer Med Informatics Assoc 9:437–447CrossRef
7.
go back to reference Fritsch H, Lienemann A, Brenner E, Ludwikowski B (2004) Clinical anatomy of the pelvic floor. Adv Anat Embryol Cell Biol 175(III-IX):1–64CrossRef Fritsch H, Lienemann A, Brenner E, Ludwikowski B (2004) Clinical anatomy of the pelvic floor. Adv Anat Embryol Cell Biol 175(III-IX):1–64CrossRef
8.
go back to reference Fritsch H, Hötzinger H (1995) Tomographical anatomy of the pelvis, visceral pelvic connective tissue, and its compartments. Clin Anat 8:17–24PubMedCrossRef Fritsch H, Hötzinger H (1995) Tomographical anatomy of the pelvis, visceral pelvic connective tissue, and its compartments. Clin Anat 8:17–24PubMedCrossRef
9.
go back to reference Fröhlich B, Hötzinger H, Fritsch H (1997) Tomographical anatomy of the pelvis, pelvic floor, and related structures. Clin Anat 10:223–230PubMedCrossRef Fröhlich B, Hötzinger H, Fritsch H (1997) Tomographical anatomy of the pelvis, pelvic floor, and related structures. Clin Anat 10:223–230PubMedCrossRef
10.
go back to reference Goodrich MA, Webb MJ, King BF, Bampton AE, Campeau NG, Riederer SJ (1993) Magnetic resonance imaging of pelvic floor relaxation: dynamic analysis and evaluation of patients before and after surgical repair. Gynecol Obstet 82:883–891 Goodrich MA, Webb MJ, King BF, Bampton AE, Campeau NG, Riederer SJ (1993) Magnetic resonance imaging of pelvic floor relaxation: dynamic analysis and evaluation of patients before and after surgical repair. Gynecol Obstet 82:883–891
11.
go back to reference Gould D (2001) The brachial plexus: developmental and assessment of a computer based learning tool. Med Educ Online 6:1–7 Gould D (2001) The brachial plexus: developmental and assessment of a computer based learning tool. Med Educ Online 6:1–7
12.
go back to reference Johnson G, Zhang M, Barnett R (2000) A comparison between epoxy resin slices and histology sections in the study of spinal connective tissue structure. J Int Soc Plastination 15:10–13 Johnson G, Zhang M, Barnett R (2000) A comparison between epoxy resin slices and histology sections in the study of spinal connective tissue structure. J Int Soc Plastination 15:10–13
13.
go back to reference Lane A (1990) Sectional anatomy: standardized methodology. J Int Soc Plastination 4:16–22 Lane A (1990) Sectional anatomy: standardized methodology. J Int Soc Plastination 4:16–22
14.
go back to reference Larson KA, Yousuf A, Lewicky-Gaupp C, Fenner DE, DeLancey JO (2010) Perineal body anatomy in living women: 3-dimensional analysis using thin-slice magnetic resonance imaging. Am J Obstet Gynecol 21(494):e15–e21 Larson KA, Yousuf A, Lewicky-Gaupp C, Fenner DE, DeLancey JO (2010) Perineal body anatomy in living women: 3-dimensional analysis using thin-slice magnetic resonance imaging. Am J Obstet Gynecol 21(494):e15–e21
15.
go back to reference Lien KC, Mooney B, DeLancey JO, Ashton-Miller JA (2004) Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol 103:31–40PubMedCrossRef Lien KC, Mooney B, DeLancey JO, Ashton-Miller JA (2004) Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol 103:31–40PubMedCrossRef
16.
go back to reference Lienemann A, Anthuber C, Baron A, Kohz P, Reiser M (1997) Dynamic MR colpocystorectography assessing pelvic-floor descent. Eur Radiol 7:1309–1317PubMedCrossRef Lienemann A, Anthuber C, Baron A, Kohz P, Reiser M (1997) Dynamic MR colpocystorectography assessing pelvic-floor descent. Eur Radiol 7:1309–1317PubMedCrossRef
17.
go back to reference Lozanoff S, Lozanoff BK, Sora MC, Rosenheimer J, Keep MF, Tregear J, Saland L, Jacobs J, Saiki S, Alverson D (2003) Anatomy and the access grid: exploiting plastinated brain sections for use in distributed medical education. Anat Rec B New Anat 270:30–37PubMedCrossRef Lozanoff S, Lozanoff BK, Sora MC, Rosenheimer J, Keep MF, Tregear J, Saland L, Jacobs J, Saiki S, Alverson D (2003) Anatomy and the access grid: exploiting plastinated brain sections for use in distributed medical education. Anat Rec B New Anat 270:30–37PubMedCrossRef
18.
go back to reference Mant J, Painter R, Vessey M (1997) Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. Br J Obstet Gynaecol 104:579–585PubMedCrossRef Mant J, Painter R, Vessey M (1997) Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. Br J Obstet Gynaecol 104:579–585PubMedCrossRef
19.
go back to reference Miller JM, Brandon C, Jacobson JA, Low LK, Zielinski R, Ashton-Miller J, Delancey JO (2010) MRI findings in patients considered high risk for pelvic floor injury studied serially after vaginal childbirth. AJR Am J Roentgenol 195:786–791PubMedCrossRef Miller JM, Brandon C, Jacobson JA, Low LK, Zielinski R, Ashton-Miller J, Delancey JO (2010) MRI findings in patients considered high risk for pelvic floor injury studied serially after vaginal childbirth. AJR Am J Roentgenol 195:786–791PubMedCrossRef
20.
go back to reference Moody D, Lozanoff S (1998) SURFdriver a practical computer program for generating three-dimensional models of anatomical structures using a PowerMac. Clin Anat 11:133 Moody D, Lozanoff S (1998) SURFdriver a practical computer program for generating three-dimensional models of anatomical structures using a PowerMac. Clin Anat 11:133
21.
go back to reference Neider GL, Scott JN, Anderson MD (2000) Using quicktime virtual reality objects in computer-assisted instruction of gross anatomy: yorick the VR skull. Clin Anat 13:287–293CrossRef Neider GL, Scott JN, Anderson MD (2000) Using quicktime virtual reality objects in computer-assisted instruction of gross anatomy: yorick the VR skull. Clin Anat 13:287–293CrossRef
22.
go back to reference Qiu MG, Zhang SX, Liu ZJ, Tan LW, Wang YS, Deng JH, Tang ZS (2003) Plastination and computerized 3D reconstruction of the temporal bone. Clin Anat 16:300–303PubMedCrossRef Qiu MG, Zhang SX, Liu ZJ, Tan LW, Wang YS, Deng JH, Tang ZS (2003) Plastination and computerized 3D reconstruction of the temporal bone. Clin Anat 16:300–303PubMedCrossRef
23.
go back to reference Sha Y, Zhang SX, Liu ZJ, Tan LW, Wu XY, Wan YS, Deng JH, Tang ZS (2001) Computerized 3D-reconstructions of the ligaments of the lateral aspect of ankle and subtalar joints. Surg Radiol Anat 23:111–114PubMedCrossRef Sha Y, Zhang SX, Liu ZJ, Tan LW, Wu XY, Wan YS, Deng JH, Tang ZS (2001) Computerized 3D-reconstructions of the ligaments of the lateral aspect of ankle and subtalar joints. Surg Radiol Anat 23:111–114PubMedCrossRef
24.
go back to reference Sora MC, Strobl B, Forster-Streffleur S, Staykov D (2002) Optic nerve compression analyzed by using plastination. Surg Radiol Anat 24:205–208PubMedCrossRef Sora MC, Strobl B, Forster-Streffleur S, Staykov D (2002) Optic nerve compression analyzed by using plastination. Surg Radiol Anat 24:205–208PubMedCrossRef
25.
go back to reference Sora MC (2007) Epoxy plastination of biological tissue: E12 ultra-thin technique. J Int Soc Plastination 22:40–45 Sora MC (2007) Epoxy plastination of biological tissue: E12 ultra-thin technique. J Int Soc Plastination 22:40–45
26.
go back to reference Sora MC, Genser-Strobl B, Radu J, Lozanoff S (2007) Three-dimensional reconstruction of the ankle by means of ultrathin slice plastination. Clin Anat 20:196–200PubMedCrossRef Sora MC, Genser-Strobl B, Radu J, Lozanoff S (2007) Three-dimensional reconstruction of the ankle by means of ultrathin slice plastination. Clin Anat 20:196–200PubMedCrossRef
27.
go back to reference Standring S (2008) Muscles of the pelvis. In: Gray’s anatomy, 40th edn. Churchill-Livingstone, London, p 1083 Standring S (2008) Muscles of the pelvis. In: Gray’s anatomy, 40th edn. Churchill-Livingstone, London, p 1083
28.
go back to reference von Hagens G (1977) Patents: DBP at 27 10 147 (1978) Brit Pat 1 558 802 (1984) Brit Pat 22 082 041 (1978) Belg Pat 863.949 (1978) RSA Pat 78/1330 (1980) Austr. Pat 360 272 (1980) US Pat 4, 205.059 (1981) US Pat 4, 244, 992 (1981) US Pat 4, 278, 701 (1982) US-Pat 4, 320, 157 von Hagens G (1977) Patents: DBP at 27 10 147 (1978) Brit Pat 1 558 802 (1984) Brit Pat 22 082 041 (1978) Belg Pat 863.949 (1978) RSA Pat 78/1330 (1980) Austr. Pat 360 272 (1980) US Pat 4, 205.059 (1981) US Pat 4, 244, 992 (1981) US Pat 4, 278, 701 (1982) US-Pat 4, 320, 157
29.
go back to reference Thomas M, Steinke H, Schulz T (2004) A direct comparison of MR images and thin-layer plastination of the shoulder in the apprehension-test position. Surg Radiol Anat 26(2):110–117PubMedCrossRef Thomas M, Steinke H, Schulz T (2004) A direct comparison of MR images and thin-layer plastination of the shoulder in the apprehension-test position. Surg Radiol Anat 26(2):110–117PubMedCrossRef
30.
go back to reference Trelease RB (2002) Anatomical informatics: millenial perspectives on a newer frontier. Anat Rec 269:224–235PubMedCrossRef Trelease RB (2002) Anatomical informatics: millenial perspectives on a newer frontier. Anat Rec 269:224–235PubMedCrossRef
31.
go back to reference Woodfield CA, Krishnamoorthy S, Hampton BS, Brody JM (2010) Imaging pelvic floor disorders: trend toward comprehensive MRI. AJR Am J Roentgenol 194:1640–1649PubMedCrossRef Woodfield CA, Krishnamoorthy S, Hampton BS, Brody JM (2010) Imaging pelvic floor disorders: trend toward comprehensive MRI. AJR Am J Roentgenol 194:1640–1649PubMedCrossRef
Metadata
Title
Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations
Authors
Mircea-Constantin Sora
Radu Jilavu
Petru Matusz
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Surgical and Radiologic Anatomy / Issue 8/2012
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-011-0862-2

Other articles of this Issue 8/2012

Surgical and Radiologic Anatomy 8/2012 Go to the issue