Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 3/2018

01-03-2018 | Laboratory Investigation

Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics

Authors: Nam S. Hoang, Benjamin H. Ge, Lorraine Y. Pan, Michael G. Ozawa, Christina S. Kong, John D. Louie, Rajesh P. Shah

Published in: CardioVascular and Interventional Radiology | Issue 3/2018

Login to get access

Abstract

Purpose

The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues.

Methods

The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012–October 2013) and post-implementation (December 2013–April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing.

Results

Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2–5 passes depending on needle cut and tissue type.

Conclusion

Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.
Literature
1.
go back to reference Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRefPubMedPubMedCentral Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRefPubMedPubMedCentral
2.
go back to reference Lalji UC, Wildberger JE, Zur Hausen A, Bendek M, Dingemans A-MC, Hochstenbag M, et al. CT-Guided percutaneous transthoracic needle biopsies using 10G large-core needles: initial experience. Cardiovasc Intervent Radiol. 2015;38:1603–10.CrossRefPubMedPubMedCentral Lalji UC, Wildberger JE, Zur Hausen A, Bendek M, Dingemans A-MC, Hochstenbag M, et al. CT-Guided percutaneous transthoracic needle biopsies using 10G large-core needles: initial experience. Cardiovasc Intervent Radiol. 2015;38:1603–10.CrossRefPubMedPubMedCentral
3.
go back to reference Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388:1002–11.CrossRefPubMed Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388:1002–11.CrossRefPubMed
4.
5.
go back to reference Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn. 2014;16:56–67.CrossRefPubMedPubMedCentral Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn. 2014;16:56–67.CrossRefPubMedPubMedCentral
6.
go back to reference Austin MC, Bs CS, Pritchard CC, Tait JF. DNA yield from tissue samples in surgical pathology and minimum tissue requirements for molecular testing. Arch Pathol Lab Med. 2016;140:130–3.CrossRefPubMed Austin MC, Bs CS, Pritchard CC, Tait JF. DNA yield from tissue samples in surgical pathology and minimum tissue requirements for molecular testing. Arch Pathol Lab Med. 2016;140:130–3.CrossRefPubMed
7.
go back to reference Cho M, Ahn S, Hong M, Bang H, Van Vrancken M, Kim S, et al. Tissue recommendations for precision cancer therapy using next generation sequencing: a comprehensive single cancer center’s experiences. Oncotarget. 2017;8:42478–86.PubMedPubMedCentral Cho M, Ahn S, Hong M, Bang H, Van Vrancken M, Kim S, et al. Tissue recommendations for precision cancer therapy using next generation sequencing: a comprehensive single cancer center’s experiences. Oncotarget. 2017;8:42478–86.PubMedPubMedCentral
8.
go back to reference Yang C-S, Choi E, Idrees MT, Chen S, Wu HH. Percutaneous biopsy of the renal mass: FNA or core needle biopsy? Cancer. 2017;125:407–15. Yang C-S, Choi E, Idrees MT, Chen S, Wu HH. Percutaneous biopsy of the renal mass: FNA or core needle biopsy? Cancer. 2017;125:407–15.
9.
go back to reference Patel K, Kinnear D, Quintanilla NM, Hicks J, Castro E, Curry C, et al. Optimal diagnostic yield achieved with on-site pathology evaluation of fine-needle aspiration–assisted core biopsies for pediatric osseous lesions: a single-center experience. Arch Pathol Lab Med. 2017;141:678–83.CrossRefPubMed Patel K, Kinnear D, Quintanilla NM, Hicks J, Castro E, Curry C, et al. Optimal diagnostic yield achieved with on-site pathology evaluation of fine-needle aspiration–assisted core biopsies for pediatric osseous lesions: a single-center experience. Arch Pathol Lab Med. 2017;141:678–83.CrossRefPubMed
10.
go back to reference Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30:499–508.CrossRefPubMed Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30:499–508.CrossRefPubMed
11.
go back to reference Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123:659–68.CrossRefPubMed Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123:659–68.CrossRefPubMed
12.
go back to reference Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. Am J Clin Pathol. 2015;143:193–200 (quiz 306).CrossRefPubMed Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. Am J Clin Pathol. 2015;143:193–200 (quiz 306).CrossRefPubMed
13.
go back to reference Tam AL, Lim HJ, Wistuba II, Tamrazi A, Kuo MD, Ziv E, et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J Vasc Interv Radiol. 2016;27(1):8–19.CrossRefPubMed Tam AL, Lim HJ, Wistuba II, Tamrazi A, Kuo MD, Ziv E, et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J Vasc Interv Radiol. 2016;27(1):8–19.CrossRefPubMed
14.
go back to reference Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J. 2009 Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res. 2009;69:6770–2.CrossRefPubMedPubMedCentral Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J. 2009 Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res. 2009;69:6770–2.CrossRefPubMedPubMedCentral
15.
go back to reference Gupta S, Wallace MJ, Cardella JF, Kundu S, Miller DL, Rose SC, et al. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol. 2010;21:969–75.CrossRefPubMed Gupta S, Wallace MJ, Cardella JF, Kundu S, Miller DL, Rose SC, et al. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol. 2010;21:969–75.CrossRefPubMed
16.
go back to reference Focke CM, Decker T, van Diest PJ. The reliability of histological grade in breast cancer core needle biopsies depends on biopsy size: a comparative study with subsequent surgical excisions. Histopathology. 2016;69:1047–54.CrossRefPubMed Focke CM, Decker T, van Diest PJ. The reliability of histological grade in breast cancer core needle biopsies depends on biopsy size: a comparative study with subsequent surgical excisions. Histopathology. 2016;69:1047–54.CrossRefPubMed
17.
go back to reference Häggarth L, Ekman P, Egevad L. A new core-biopsy instrument with an end-cut technique provides prostate biopsies with increased tissue yield. BJU Int. 2002;90:51–5.CrossRefPubMed Häggarth L, Ekman P, Egevad L. A new core-biopsy instrument with an end-cut technique provides prostate biopsies with increased tissue yield. BJU Int. 2002;90:51–5.CrossRefPubMed
19.
go back to reference Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229:475–81.CrossRefPubMed Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229:475–81.CrossRefPubMed
20.
go back to reference Abe H, Schmidt RA, Sennett CA, Shimauchi A, Newstead GM. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27(Suppl 1):S91–9.CrossRefPubMed Abe H, Schmidt RA, Sennett CA, Shimauchi A, Newstead GM. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27(Suppl 1):S91–9.CrossRefPubMed
21.
go back to reference Ward SR, Lieber RL. Density and hydration of fresh and fixed human skeletal muscle. J Biomech. 2005;38:2317–20.CrossRefPubMed Ward SR, Lieber RL. Density and hydration of fresh and fixed human skeletal muscle. J Biomech. 2005;38:2317–20.CrossRefPubMed
23.
go back to reference Kobara H, Mori H, Rafiq K, Fujihara S, Nishiyama N, Chiyo T, et al. Analysis of the amount of tissue sample necessary for mitotic count and Ki-67 index in gastrointestinal stromal tumor sampling. Oncol Rep. 2015;33:215–22.CrossRefPubMed Kobara H, Mori H, Rafiq K, Fujihara S, Nishiyama N, Chiyo T, et al. Analysis of the amount of tissue sample necessary for mitotic count and Ki-67 index in gastrointestinal stromal tumor sampling. Oncol Rep. 2015;33:215–22.CrossRefPubMed
24.
go back to reference Solomon SB, Zakowski MF, Pao W, Thornton RH, Ladanyi M, Kris MG, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol. 2010;194:266–9.CrossRefPubMedPubMedCentral Solomon SB, Zakowski MF, Pao W, Thornton RH, Ladanyi M, Kris MG, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol. 2010;194:266–9.CrossRefPubMedPubMedCentral
25.
go back to reference Tam AL, Kim ES, Lee JJ, Ensor JE, Hicks ME, Tang X, et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol. 2013;8:436–42.CrossRefPubMed Tam AL, Kim ES, Lee JJ, Ensor JE, Hicks ME, Tang X, et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol. 2013;8:436–42.CrossRefPubMed
26.
go back to reference Pirker R, Herth FJF, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5:1706–13.CrossRefPubMed Pirker R, Herth FJF, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5:1706–13.CrossRefPubMed
27.
28.
go back to reference Dogan HS, Eskicorapci SY, Ertoy-Baydar D, Akdogan B, Gunay LM, Ozen H. Can we obtain better specimens with an end-cutting prostatic biopsy device? Eur Urol. 2005;47(3):297–301.CrossRefPubMed Dogan HS, Eskicorapci SY, Ertoy-Baydar D, Akdogan B, Gunay LM, Ozen H. Can we obtain better specimens with an end-cutting prostatic biopsy device? Eur Urol. 2005;47(3):297–301.CrossRefPubMed
29.
go back to reference Ubhayakar GN, Li WY, Corbishley CM, Patel U. Improving glandular coverage during prostate biopsy using a long-core needle: technical performance of an end-cutting needle. BJU Int. 2002;89:40–3.CrossRefPubMed Ubhayakar GN, Li WY, Corbishley CM, Patel U. Improving glandular coverage during prostate biopsy using a long-core needle: technical performance of an end-cutting needle. BJU Int. 2002;89:40–3.CrossRefPubMed
30.
go back to reference Wang J, Wan B, Li C, Wang J, Fu Q, Zhao W, et al. Diagnostic yield and complications using a 20 gauge prostate biopsy needle versus a standard 18 gauge needle: a randomized controlled study. Urol J. 2015;12:2329–33.PubMed Wang J, Wan B, Li C, Wang J, Fu Q, Zhao W, et al. Diagnostic yield and complications using a 20 gauge prostate biopsy needle versus a standard 18 gauge needle: a randomized controlled study. Urol J. 2015;12:2329–33.PubMed
Metadata
Title
Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics
Authors
Nam S. Hoang
Benjamin H. Ge
Lorraine Y. Pan
Michael G. Ozawa
Christina S. Kong
John D. Louie
Rajesh P. Shah
Publication date
01-03-2018
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 3/2018
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-017-1861-4

Other articles of this Issue 3/2018

CardioVascular and Interventional Radiology 3/2018 Go to the issue