Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 10/2017

01-10-2017 | Clinical Investigation

Pediatric Percutaneous Osteoid Osteoma Ablation: Cone-Beam CT with Fluoroscopic Overlay Versus Conventional CT Guidance

Authors: Brandon C. Perry, Eric J. Monroe, Tyler McKay, Kalpana M. Kanal, Giridhar Shivaram

Published in: CardioVascular and Interventional Radiology | Issue 10/2017

Login to get access

Abstract

Purpose

To compare technical success, clinical success, complications, radiation dose, and total room utilization time for osteoid osteoma thermal (radiofrequency or microwave) ablation using cone-beam computed tomography (CBCT) with two-axis fluoroscopic navigational overlay versus conventional computed tomography (CT) guidance.

Materials and Methods

A retrospective review was performed to identify all osteoid osteoma ablations performed over a 5.5-year period at a single tertiary care pediatric hospital. Twenty-five ablations (15 radiofrequency and 10 microwave) in 23 patients undergoing fluoroscopic CBCT-guided osteoid osteoma ablation were compared to 35 ablations (35 radiofrequency) in 32 patients undergoing ablation via conventional CT guidance. Dose area product and dose length product were recorded for CBCT and conventional CT, respectively, and converted to effective doses. Technical success, clinical success (cessation of pain and medication use 1 month after ablation), complications, radiation dose, and total room utilization time were compared.

Results

All procedures were technically successful. Twenty-two of 25 (88.0%) CBCT and 31 of 35 (88.6%) conventional CT-guided ablations achieved immediate clinical success. There were two minor complications in each group and no major complications. Mean effective radiation dose was significantly lower for CBCT compared to CT guidance (0.12 vs. 0.39 mSv, p = 0.02). Mean total room utilization time for CBCT was longer (133.5 vs. 97.5 min, p = 0.0001).

Conclusions

Fluoroscopic CBCT guidance for percutaneous osteoid osteoma ablation yields similar technical and clinical success, reduced radiation dose, and increased total room utilization time compared to conventional CT guidance.
Literature
1.
go back to reference Earhart J, Wellman D, Donaldson J, et al. Radiofrequency ablation in the treatment of osteoid osteoma: results and complications. Pediatr Radiol. 2013;43(7):814–9.CrossRefPubMed Earhart J, Wellman D, Donaldson J, et al. Radiofrequency ablation in the treatment of osteoid osteoma: results and complications. Pediatr Radiol. 2013;43(7):814–9.CrossRefPubMed
2.
go back to reference Rehnitz C, Sprengel SD, Lehner B, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol. 2012;81(11):3426–34.CrossRefPubMed Rehnitz C, Sprengel SD, Lehner B, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol. 2012;81(11):3426–34.CrossRefPubMed
3.
go back to reference de Palma L, Candelari R, Antico E, et al. Treatment of osteoid osteoma with CT-guided percutaneous radiofrequency thermoablation. Orthopedics. 2013;36(5):e581–7.CrossRefPubMed de Palma L, Candelari R, Antico E, et al. Treatment of osteoid osteoma with CT-guided percutaneous radiofrequency thermoablation. Orthopedics. 2013;36(5):e581–7.CrossRefPubMed
4.
go back to reference Whitmore MJ, Hawkins CM, Prologo JD, et al. Cryoablation of osteoid osteoma in the pediatric and adolescent population. J Vasc Interv Radiol. 2016;27(2):232–7.CrossRefPubMed Whitmore MJ, Hawkins CM, Prologo JD, et al. Cryoablation of osteoid osteoma in the pediatric and adolescent population. J Vasc Interv Radiol. 2016;27(2):232–7.CrossRefPubMed
5.
go back to reference Etienne A, Waynberger E, Druon J. Interstitial laser photocoagulation for the treatment of osteoid osteoma: Retrospective study on 35 cases. Diagn Interv Imaging. 2013;94:300–10.CrossRefPubMed Etienne A, Waynberger E, Druon J. Interstitial laser photocoagulation for the treatment of osteoid osteoma: Retrospective study on 35 cases. Diagn Interv Imaging. 2013;94:300–10.CrossRefPubMed
6.
go back to reference Tselikas L, Joskin J, Roquet F, et al. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol. 2015;38(1):167–76.CrossRefPubMed Tselikas L, Joskin J, Roquet F, et al. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol. 2015;38(1):167–76.CrossRefPubMed
7.
go back to reference Busser WM, Hoogeveen YL, Veth RP, et al. Percutaneous radiofrequency ablation of osteoid osteomas with use of real-time needle guidance for accurate needle placement: a pilot study. Cardiovasc Intervent Radiol. 2011;34(1):180–3.CrossRefPubMed Busser WM, Hoogeveen YL, Veth RP, et al. Percutaneous radiofrequency ablation of osteoid osteomas with use of real-time needle guidance for accurate needle placement: a pilot study. Cardiovasc Intervent Radiol. 2011;34(1):180–3.CrossRefPubMed
8.
go back to reference Abi-Jaoudeh N, Venkatesan AM, Van der Sterren W, et al. Clinical experience with cone-beam CT navigation for tumor ablation. J Vasc Interv Radiol. 2015;26(2):214–9.CrossRefPubMedPubMedCentral Abi-Jaoudeh N, Venkatesan AM, Van der Sterren W, et al. Clinical experience with cone-beam CT navigation for tumor ablation. J Vasc Interv Radiol. 2015;26(2):214–9.CrossRefPubMedPubMedCentral
9.
go back to reference Cazzato RL, Battistuzzi JB, Catena V, et al. Cone-beam computed tomography (CBCT) versus CT in lung ablation procedure: which is faster? Cardiovasc Intervent Radiol. 2015;38(5):1231–6.CrossRefPubMed Cazzato RL, Battistuzzi JB, Catena V, et al. Cone-beam computed tomography (CBCT) versus CT in lung ablation procedure: which is faster? Cardiovasc Intervent Radiol. 2015;38(5):1231–6.CrossRefPubMed
10.
go back to reference McKay T, Ingraham CR, Johnson GE, et al. Cone-beam CT with fluoroscopic overlay versus conventional ct guidance for percutaneous abdominopelvic abscess drain placement. J Vasc Interv Radiol. 2016;27(1):52–7.CrossRefPubMed McKay T, Ingraham CR, Johnson GE, et al. Cone-beam CT with fluoroscopic overlay versus conventional ct guidance for percutaneous abdominopelvic abscess drain placement. J Vasc Interv Radiol. 2016;27(1):52–7.CrossRefPubMed
11.
go back to reference Carrafiello G, Ierardi AM, Duka E, et al. Usefulness of cone-beam computed tomography and automatic vessel detection software in emergency transarterial embolization. Cardiovasc Intervent Radiol. 2016;39(4):530–7.CrossRefPubMed Carrafiello G, Ierardi AM, Duka E, et al. Usefulness of cone-beam computed tomography and automatic vessel detection software in emergency transarterial embolization. Cardiovasc Intervent Radiol. 2016;39(4):530–7.CrossRefPubMed
12.
go back to reference Floridi C, Radaelli A, Abi-Jaoudeh N, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med. 2014;119(7):521–32.CrossRefPubMedPubMedCentral Floridi C, Radaelli A, Abi-Jaoudeh N, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med. 2014;119(7):521–32.CrossRefPubMedPubMedCentral
14.
go back to reference Bapst B, Lagadec M, Breguet R, et al. Cone beam computed tomography (CBCT) in the field of interventional oncology of the liver. Cardiovasc Intervent Radiol. 2016;39(1):8–20.CrossRefPubMed Bapst B, Lagadec M, Breguet R, et al. Cone beam computed tomography (CBCT) in the field of interventional oncology of the liver. Cardiovasc Intervent Radiol. 2016;39(1):8–20.CrossRefPubMed
15.
go back to reference Orth RC, Wallace MJ, Kuo MD. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19(6):814–20.CrossRefPubMed Orth RC, Wallace MJ, Kuo MD. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19(6):814–20.CrossRefPubMed
16.
go back to reference Orth RC, Wallace MJ, Kuo MD, et al. Technology assessment committee of the society of interventional radiology C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19(6):814–20.CrossRefPubMed Orth RC, Wallace MJ, Kuo MD, et al. Technology assessment committee of the society of interventional radiology C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19(6):814–20.CrossRefPubMed
17.
go back to reference Castellano IA, McNeill JG, Thorp NC, Dance DR, Raphael MJ. Assessment of organ radiation doses and associated risk for digital bifemoral arteriography. Br J Radiol. 1995;68(809):502–7.CrossRefPubMed Castellano IA, McNeill JG, Thorp NC, Dance DR, Raphael MJ. Assessment of organ radiation doses and associated risk for digital bifemoral arteriography. Br J Radiol. 1995;68(809):502–7.CrossRefPubMed
18.
go back to reference McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 1998;71(842):175–85.CrossRefPubMed McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 1998;71(842):175–85.CrossRefPubMed
19.
go back to reference Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273(1):153–9.CrossRefPubMed Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273(1):153–9.CrossRefPubMed
20.
go back to reference National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States. National Council on Radiation Protection report no. 160. Bethesda, Md: National Council on Radiation Protection and Measurements, 2009. National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States. National Council on Radiation Protection report no. 160. Bethesda, Md: National Council on Radiation Protection and Measurements, 2009.
21.
go back to reference Johnson C, Martin-Carreras T, Rabinowitz D. Pediatric interventional radiology and dose-reduction techniques. Semin Ultrasound CT MR. 2014;35(4):409–14.CrossRefPubMed Johnson C, Martin-Carreras T, Rabinowitz D. Pediatric interventional radiology and dose-reduction techniques. Semin Ultrasound CT MR. 2014;35(4):409–14.CrossRefPubMed
22.
go back to reference International Commission on Radiological Protection (ICRP). The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4):49–50. International Commission on Radiological Protection (ICRP). The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4):49–50.
23.
go back to reference Cheng EY, Naranje SM, Ritenour ER. Radiation dosimetry of intraoperative cone-beam compared with conventional CT for radiofrequency ablation of osteoid osteoma. J Bone Joint Surg Am. 2014;96(9):735–42.CrossRefPubMed Cheng EY, Naranje SM, Ritenour ER. Radiation dosimetry of intraoperative cone-beam compared with conventional CT for radiofrequency ablation of osteoid osteoma. J Bone Joint Surg Am. 2014;96(9):735–42.CrossRefPubMed
24.
go back to reference Biswas D, Bible JE, Bohan M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.CrossRefPubMed Biswas D, Bible JE, Bohan M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.CrossRefPubMed
25.
go back to reference Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry. 2013;157(4):515–24.CrossRefPubMed Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry. 2013;157(4):515–24.CrossRefPubMed
26.
go back to reference Zbijewski W, De Jean P, Prakash P, et al. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Med Phys. 2011;38(8):4700–13.CrossRefPubMedPubMedCentral Zbijewski W, De Jean P, Prakash P, et al. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Med Phys. 2011;38(8):4700–13.CrossRefPubMedPubMedCentral
27.
go back to reference Braak SJ, vanStrijen MJ, van Es HW, et al. Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol. 2011;22:455–61.CrossRefPubMed Braak SJ, vanStrijen MJ, van Es HW, et al. Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol. 2011;22:455–61.CrossRefPubMed
28.
go back to reference Bai M, LiuB MuH, et al. The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT):a phantom study. Eur J Radiol. 2012;81:3577–80.CrossRefPubMed Bai M, LiuB MuH, et al. The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT):a phantom study. Eur J Radiol. 2012;81:3577–80.CrossRefPubMed
29.
go back to reference Kwok YM, Irani FG, Tay KH, et al. Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol. 2013;23(11):3197–204.CrossRefPubMed Kwok YM, Irani FG, Tay KH, et al. Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol. 2013;23(11):3197–204.CrossRefPubMed
Metadata
Title
Pediatric Percutaneous Osteoid Osteoma Ablation: Cone-Beam CT with Fluoroscopic Overlay Versus Conventional CT Guidance
Authors
Brandon C. Perry
Eric J. Monroe
Tyler McKay
Kalpana M. Kanal
Giridhar Shivaram
Publication date
01-10-2017
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 10/2017
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-017-1685-2

Other articles of this Issue 10/2017

CardioVascular and Interventional Radiology 10/2017 Go to the issue