Skip to main content
Top
Published in: World Journal of Surgery 10/2016

01-10-2016 | Surgical History

30 Years of Robotic Surgery

Authors: Tiago Leal Ghezzi, Oly Campos Corleta

Published in: World Journal of Surgery | Issue 10/2016

Login to get access

Abstract

The idea of reproducing himself with the use of a mechanical robot structure has been in man’s imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first “robot surgeon” used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of “master–slave” robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci® robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.
Literature
1.
go back to reference Goertz RC (1952) Fundamentals of general purpose remote manipulators. Nucleonics 1001:36–42 Goertz RC (1952) Fundamentals of general purpose remote manipulators. Nucleonics 1001:36–42
2.
go back to reference Goertz RC (1953) Remote-control manipulator. US Patent 2632574, Washington, DC: US Patent Office Goertz RC (1953) Remote-control manipulator. US Patent 2632574, Washington, DC: US Patent Office
3.
go back to reference Devol GC (1961) Programmed article transfer. US Patent 2988237, Washington, DC: US Patent Office Devol GC (1961) Programmed article transfer. US Patent 2988237, Washington, DC: US Patent Office
5.
go back to reference Capek K (1923) The meaning of R.U.R. Saturday Rev 136:79 Capek K (1923) The meaning of R.U.R. Saturday Rev 136:79
7.
go back to reference Robotics Today, Robotics Institute of America (RIA) News, Spring, 1980, p 7 Robotics Today, Robotics Institute of America (RIA) News, Spring, 1980, p 7
8.
go back to reference Abdul-Muhsin H, Patel V (2014) History of robotic surgery. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 3–8CrossRef Abdul-Muhsin H, Patel V (2014) History of robotic surgery. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 3–8CrossRef
9.
go back to reference Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160CrossRefPubMed Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160CrossRefPubMed
10.
go back to reference Harris SJ, Arambula-Cosio F, Mei Q et al (1997) The Probot—an active robot for procedures. Proc Inst Mech Eng H 211:317–325CrossRefPubMed Harris SJ, Arambula-Cosio F, Mei Q et al (1997) The Probot—an active robot for procedures. Proc Inst Mech Eng H 211:317–325CrossRefPubMed
11.
go back to reference Davies BL, Hibber RD, Ng WS et al (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 205:35–38CrossRef Davies BL, Hibber RD, Ng WS et al (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 205:35–38CrossRef
12.
go back to reference Fischer SS, McGreevy MM, Humphries J et al (1987) Virtual environmental display system. In: Crow F, Pizer S (eds) Proceedings of the workshop on interactive 3-D graphics, Chappel Hill, pp 1–12 Fischer SS, McGreevy MM, Humphries J et al (1987) Virtual environmental display system. In: Crow F, Pizer S (eds) Proceedings of the workshop on interactive 3-D graphics, Chappel Hill, pp 1–12
13.
go back to reference Green PS, Satava RM, Hill JR et al (1992) Telepresence: advanced teleoperator technology for minimally invasive surgery. Surg Endosc 6:90CrossRef Green PS, Satava RM, Hill JR et al (1992) Telepresence: advanced teleoperator technology for minimally invasive surgery. Surg Endosc 6:90CrossRef
15.
go back to reference Satava RM (2003) Robotic surgery: from past to future: a personal journey. Surg Clin North Am 83:1491–1500CrossRefPubMed Satava RM (2003) Robotic surgery: from past to future: a personal journey. Surg Clin North Am 83:1491–1500CrossRefPubMed
16.
go back to reference Bowersox JC, Shah A, Jensen J et al (1996) Vascular applications of telepresence surgery: initial feasibility studies in swine. J Vasc Surg 23(2):281–287CrossRefPubMed Bowersox JC, Shah A, Jensen J et al (1996) Vascular applications of telepresence surgery: initial feasibility studies in swine. J Vasc Surg 23(2):281–287CrossRefPubMed
18.
go back to reference Ewing DR, Pigazzi A, Wang Y et al (2004) Robots in the operating room: the history. Semin Laparosc Surg 11:63–71PubMed Ewing DR, Pigazzi A, Wang Y et al (2004) Robots in the operating room: the history. Semin Laparosc Surg 11:63–71PubMed
19.
go back to reference Sackier JM, Wang Y (1994) Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc 8:63–66CrossRefPubMed Sackier JM, Wang Y (1994) Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc 8:63–66CrossRefPubMed
20.
go back to reference Baæa I, Schultz C, Grzybowski L et al (1999) Voice-controlled robotic arm in laparoscopic surgery. Croat Med J 40(3):409–412 Baæa I, Schultz C, Grzybowski L et al (1999) Voice-controlled robotic arm in laparoscopic surgery. Croat Med J 40(3):409–412
21.
go back to reference Falcone T, Goldberg J, Garcia-Ruiz A et al (1999) Full robotic for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A 9:107–113CrossRefPubMed Falcone T, Goldberg J, Garcia-Ruiz A et al (1999) Full robotic for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A 9:107–113CrossRefPubMed
22.
go back to reference Hashizume M, Konishi K, Tsutsumi N et al (2002) A new era of robotic surgery assisted by a computer-enhanced surgical system. Surgery 131(1l):S330–S333CrossRefPubMed Hashizume M, Konishi K, Tsutsumi N et al (2002) A new era of robotic surgery assisted by a computer-enhanced surgical system. Surgery 131(1l):S330–S333CrossRefPubMed
23.
go back to reference Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380CrossRefPubMed Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380CrossRefPubMed
25.
go back to reference Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12(8):1091CrossRefPubMed Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12(8):1091CrossRefPubMed
26.
go back to reference Hagen ME, Stein H, Curet MJ (2014) Introduction to the robotic system. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 9–16CrossRef Hagen ME, Stein H, Curet MJ (2014) Introduction to the robotic system. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 9–16CrossRef
27.
29.
go back to reference Binder J, Kramer W (2001) Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87(4):408–410CrossRefPubMed Binder J, Kramer W (2001) Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87(4):408–410CrossRefPubMed
30.
go back to reference Ficarra E, Cavalleri S, Novara G et al (2007) Evidence from robot-assisted laparoscopic radical prostatectomy: a systematic review. Eur Urol 51:45–56CrossRefPubMed Ficarra E, Cavalleri S, Novara G et al (2007) Evidence from robot-assisted laparoscopic radical prostatectomy: a systematic review. Eur Urol 51:45–56CrossRefPubMed
31.
32.
go back to reference Tekkis PP, Senagore AJ, Delaney CP et al (2005) Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 242:83–91CrossRefPubMedPubMedCentral Tekkis PP, Senagore AJ, Delaney CP et al (2005) Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 242:83–91CrossRefPubMedPubMedCentral
33.
go back to reference Taffinder N, Smith SGT, Huber J et al (1999) The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons. Surg Endosc 13:1087–1092CrossRefPubMed Taffinder N, Smith SGT, Huber J et al (1999) The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons. Surg Endosc 13:1087–1092CrossRefPubMed
34.
go back to reference Kroh M, El-Hayek K, Rosenblatt S et al (2011) First human surgery with a novel single port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc 25:3566–3573CrossRefPubMed Kroh M, El-Hayek K, Rosenblatt S et al (2011) First human surgery with a novel single port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc 25:3566–3573CrossRefPubMed
35.
go back to reference Hellan M, Spinoglio G, Pigazzi A et al (2014) The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc 28:1695–1702CrossRefPubMed Hellan M, Spinoglio G, Pigazzi A et al (2014) The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc 28:1695–1702CrossRefPubMed
36.
go back to reference Aslee LS, Scott EM, Krivak TC et al (2013) Dual-console robotic surgery: a new teaching paradigm. J Robot Surg 7(2):113–118CrossRef Aslee LS, Scott EM, Krivak TC et al (2013) Dual-console robotic surgery: a new teaching paradigm. J Robot Surg 7(2):113–118CrossRef
37.
go back to reference Bhayani SB, Snow DC (2008) Novel dynamic information integration during da Vinci robotic partial nephrectomy and radical. J Robot Surg 2:67–69CrossRefPubMed Bhayani SB, Snow DC (2008) Novel dynamic information integration during da Vinci robotic partial nephrectomy and radical. J Robot Surg 2:67–69CrossRefPubMed
38.
go back to reference Atallah S, Martin-Perez B, Pinan J et al (2014) Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol 18(11):1047–1053CrossRefPubMed Atallah S, Martin-Perez B, Pinan J et al (2014) Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol 18(11):1047–1053CrossRefPubMed
39.
go back to reference Cadière GB, Himpens J, Vetruyen M et al (1999) The world´s first obesity surgery performed by a surgeon at a distance. Obes Surg 9:206–209CrossRefPubMed Cadière GB, Himpens J, Vetruyen M et al (1999) The world´s first obesity surgery performed by a surgeon at a distance. Obes Surg 9:206–209CrossRefPubMed
40.
go back to reference Cadière GB, Himpens J, Vertruyen M et al (2001) Evaluation of telesurgical (robotic) NISSEN fundoplication. Surg Endosc 15:918–923CrossRefPubMed Cadière GB, Himpens J, Vertruyen M et al (2001) Evaluation of telesurgical (robotic) NISSEN fundoplication. Surg Endosc 15:918–923CrossRefPubMed
41.
go back to reference Horgan S, Vanuno D (2001) Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A 11:415–419CrossRefPubMed Horgan S, Vanuno D (2001) Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A 11:415–419CrossRefPubMed
42.
go back to reference Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784CrossRefPubMed Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784CrossRefPubMed
43.
go back to reference Hashizume M, Shimada M, Tomikawa M et al (2002) Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16:1187–1191CrossRefPubMed Hashizume M, Shimada M, Tomikawa M et al (2002) Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16:1187–1191CrossRefPubMed
44.
go back to reference Weber P, Merola S, Wasielewski A et al (2002) Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum 45(12):1689–1696CrossRefPubMed Weber P, Merola S, Wasielewski A et al (2002) Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum 45(12):1689–1696CrossRefPubMed
45.
go back to reference Melvin WS, Needleman BJ, Krause KR et al (2002) Computer-enhanced robotic telesurgery. Initial experience in foregut surgery. Surg Endosc 16:1790–1792CrossRefPubMed Melvin WS, Needleman BJ, Krause KR et al (2002) Computer-enhanced robotic telesurgery. Initial experience in foregut surgery. Surg Endosc 16:1790–1792CrossRefPubMed
46.
go back to reference Ballantyne GH, Hourmont K, Wasielewski A (2003) Telerobotic laparoscopic repair of incisional ventral hernias using intraperitoneal prosthetic mesh. JSLS 7(1):7–14PubMedPubMedCentral Ballantyne GH, Hourmont K, Wasielewski A (2003) Telerobotic laparoscopic repair of incisional ventral hernias using intraperitoneal prosthetic mesh. JSLS 7(1):7–14PubMedPubMedCentral
47.
go back to reference Horgan S, Berger RA, Elli EF et al (2003) Robotic-assisted minimally invasive transhiatal esophagectomy. Am Surg 69(7):624–626PubMed Horgan S, Berger RA, Elli EF et al (2003) Robotic-assisted minimally invasive transhiatal esophagectomy. Am Surg 69(7):624–626PubMed
48.
go back to reference Kang S-W, Jeong JJ, Yun J-S et al (2009) Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 23(11):2399–2406CrossRefPubMed Kang S-W, Jeong JJ, Yun J-S et al (2009) Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 23(11):2399–2406CrossRefPubMed
49.
go back to reference Luca F, Valvo M, Ghezzi TL et al (2013) Impact of robotic surgery on sexual and urinary functions after fully robotic nerve-sparing total mesorectal surgery excision for rectal cancer. Ann Surg 257(4):672–678CrossRefPubMed Luca F, Valvo M, Ghezzi TL et al (2013) Impact of robotic surgery on sexual and urinary functions after fully robotic nerve-sparing total mesorectal surgery excision for rectal cancer. Ann Surg 257(4):672–678CrossRefPubMed
50.
go back to reference Pigazzi A (2015) Results of robotic versus laparoscopic resection for rectal cancer: ROLLAR study. ASCRS Annual Scientific Meeting, June 1st 2015, Boston Pigazzi A (2015) Results of robotic versus laparoscopic resection for rectal cancer: ROLLAR study. ASCRS Annual Scientific Meeting, June 1st 2015, Boston
51.
go back to reference Szold A, Bergamaschi R, Broeders I et al (2008) European association of endoscopic (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc 29:253–288CrossRef Szold A, Bergamaschi R, Broeders I et al (2008) European association of endoscopic (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc 29:253–288CrossRef
52.
go back to reference Lee SH, Lim S, Kim JH et al (2015) Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Ann Surg Treat Res 89(4):190–201CrossRefPubMedPubMedCentral Lee SH, Lim S, Kim JH et al (2015) Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Ann Surg Treat Res 89(4):190–201CrossRefPubMedPubMedCentral
54.
go back to reference Lucas SM, Sundara CP (2012) The MIMIC virtual reality trainer: stepping into three-dimensional, binocular, robotic simulation. In: Patel HRH, Joseph JV (eds) Simulation training in laparoscopy and robotic surgery. Springer-Verlag, London, pp 49–57CrossRef Lucas SM, Sundara CP (2012) The MIMIC virtual reality trainer: stepping into three-dimensional, binocular, robotic simulation. In: Patel HRH, Joseph JV (eds) Simulation training in laparoscopy and robotic surgery. Springer-Verlag, London, pp 49–57CrossRef
59.
go back to reference Dolghi O, Strabala KW, Wortman TD et al (2011) Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc 25:3453–3458CrossRefPubMed Dolghi O, Strabala KW, Wortman TD et al (2011) Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc 25:3453–3458CrossRefPubMed
60.
go back to reference Abboudi H, Khan MS, Aboumarzouk O et al (2013) Current status of validation for robotic surgery simulators: a systematic review. BJU Int 111(2):194–205CrossRefPubMed Abboudi H, Khan MS, Aboumarzouk O et al (2013) Current status of validation for robotic surgery simulators: a systematic review. BJU Int 111(2):194–205CrossRefPubMed
61.
go back to reference Stegemann AP, Ahmed K, Syed JR et al (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled Trial for validation of a simulation-based curriculum. Urology 81:767–774CrossRefPubMed Stegemann AP, Ahmed K, Syed JR et al (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled Trial for validation of a simulation-based curriculum. Urology 81:767–774CrossRefPubMed
62.
go back to reference Brunaud L, Reibel N, Ayav A (2011) Pancreatic, endocrine and bariatric surgery: the role of robot-assisted approaches. J Visc Surg 148(5):e47–e53CrossRefPubMed Brunaud L, Reibel N, Ayav A (2011) Pancreatic, endocrine and bariatric surgery: the role of robot-assisted approaches. J Visc Surg 148(5):e47–e53CrossRefPubMed
63.
go back to reference Terashima M, Tokunaga M, Tanizawa Y et al (2015) Robotic surgery for gastric cancer. Gastric Cancer 18(3):449–457CrossRefPubMed Terashima M, Tokunaga M, Tanizawa Y et al (2015) Robotic surgery for gastric cancer. Gastric Cancer 18(3):449–457CrossRefPubMed
64.
go back to reference Wilson EB, Bagshahi H, Woodruff VD (2014) Overview of general advantages, limitations, and strategies. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 17–22CrossRef Wilson EB, Bagshahi H, Woodruff VD (2014) Overview of general advantages, limitations, and strategies. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 17–22CrossRef
Metadata
Title
30 Years of Robotic Surgery
Authors
Tiago Leal Ghezzi
Oly Campos Corleta
Publication date
01-10-2016
Publisher
Springer International Publishing
Published in
World Journal of Surgery / Issue 10/2016
Print ISSN: 0364-2313
Electronic ISSN: 1432-2323
DOI
https://doi.org/10.1007/s00268-016-3543-9

Other articles of this Issue 10/2016

World Journal of Surgery 10/2016 Go to the issue

Original Scientific Report

Robotic-Assisted Pancreatic Resections