Skip to main content
Top
Published in: Aesthetic Plastic Surgery 2/2008

01-03-2008 | Original Article

Transforming Growth Factor-β1-Antisense Modulates the Expression of Hepatocyte Growth Factor/Scatter Factor in Keloid Fibroblast Cell Culture

Authors: R. Naim, A. Naumann, J. Barnes, A. Sauter, K. Hormann, D. Merkel, W. Aust, T. Braun, M. Bloching

Published in: Aesthetic Plastic Surgery | Issue 2/2008

Login to get access

Abstract

Abnormal wound healing processes can result in hypertrophic scars and keloids. Transforming growth factor-β1 (TGF-β1) and hepatocyte growth factor/scatter factor (HGF/SF) are biphasic growth factor cytokines in physiologic and pathophysiologic conditions. Findings have shown TGF-β1 to be pivotal in the formation of keloid tissue. Therefore, neutralizing antibodies may allow wound healing without keloid formation. As reported, TGF-β1 is antagonized by HGF/SF. Some authors have reported that exogenous administration of HGF/SF prevented scar formation. Hence, this study targeted TGF-β1 and determined the levels of HGF/SF in fibroblast cell culture. Keloid tissue was taken from seven patients. Another seven patients with mature nonhypertrophic scar served as controls. All tissues were cultured, and fibroblast cultures were used for further experiments. The TGF-β1 antisense was administered at 3 and 6 μmol/ml, and HGF/SF levels were determined after 16, 24, and 48 h of incubation. The levels of HGF/SF showed significant differences after incubation with antisense oligonucleotides. The increasing antisense levels resulted in increased HGF/SF levels (up to 87.66 pg/ml after 48 h of incubation). In conclusion, targeting TGF-β1 resulted in significantly increased levels of HGF/SF. The clinical relevance could include the use of locally administered HGF/SF in protein or gene form to minimize formation of keloids. Nevertheless, wound healing is the result of many interacting cytokines, so neutralizing or targeting one protein could result in no significant effect.
Literature
1.
go back to reference Medical Data International (1998) U.S. markets for wound management products. Medical Data International, Irvine, CA Medical Data International (1998) U.S. markets for wound management products. Medical Data International, Irvine, CA
3.
go back to reference Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46PubMedCrossRef Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46PubMedCrossRef
4.
go back to reference Ferguson MW, Whitby DJ, Shah M, Armstrong J, Siebert JW, Longaker MT (1996) Scar formation: The spectral nature of fetal and adult wound repair. Plast Reconstr Surg 97:854–860PubMedCrossRef Ferguson MW, Whitby DJ, Shah M, Armstrong J, Siebert JW, Longaker MT (1996) Scar formation: The spectral nature of fetal and adult wound repair. Plast Reconstr Surg 97:854–860PubMedCrossRef
5.
go back to reference Koonin AJ (1964) The aetiology of keloids: A review of the literature and a new hypothesis. S Afr Med J 38:913–916PubMed Koonin AJ (1964) The aetiology of keloids: A review of the literature and a new hypothesis. S Afr Med J 38:913–916PubMed
6.
go back to reference Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH (1986) Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRef Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH (1986) Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRef
7.
go back to reference Kamamoto F, Paggiaro AO, Rodas A, Herson MR, Mathor MB, Ferreira MC (2003) A wound contraction experimental model for studying keloids and wound-healing modulators. Artif Organs 27:701–705PubMedCrossRef Kamamoto F, Paggiaro AO, Rodas A, Herson MR, Mathor MB, Ferreira MC (2003) A wound contraction experimental model for studying keloids and wound-healing modulators. Artif Organs 27:701–705PubMedCrossRef
8.
go back to reference Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631PubMedCrossRef Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631PubMedCrossRef
9.
go back to reference Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78:5339–5343PubMedCrossRef Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78:5339–5343PubMedCrossRef
10.
go back to reference Anzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE (1983) Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 80:6264–6268PubMedCrossRef Anzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE (1983) Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 80:6264–6268PubMedCrossRef
11.
go back to reference Kutty RK, Kutty G, Hooks JJ, Wiggert B, Nagineni CN (1995) Transforming growth factor-beta inhibits the cytokine-mediated expression of the inducible nitric oxide synthase mRNA in human retinal pigment epithelial cells. Biochem Biophys Res Commun 215:386–393PubMedCrossRef Kutty RK, Kutty G, Hooks JJ, Wiggert B, Nagineni CN (1995) Transforming growth factor-beta inhibits the cytokine-mediated expression of the inducible nitric oxide synthase mRNA in human retinal pigment epithelial cells. Biochem Biophys Res Commun 215:386–393PubMedCrossRef
12.
go back to reference Yue J, Mulder KM (2001) Transforming growth factor-beta signal transduction in epithelial cells. Pharmacol Ther 91:1–34PubMedCrossRef Yue J, Mulder KM (2001) Transforming growth factor-beta signal transduction in epithelial cells. Pharmacol Ther 91:1–34PubMedCrossRef
13.
go back to reference Chattopadhyay N, Felt HJ, Godbole MM, Brown EM (2004) Transforming growth factor beta receptor family ligands inhibit hepatocyte growth factor synthesis and secretion from astrocytoma cells. Brain Res Mol Brain Res 121:146–150PubMedCrossRef Chattopadhyay N, Felt HJ, Godbole MM, Brown EM (2004) Transforming growth factor beta receptor family ligands inhibit hepatocyte growth factor synthesis and secretion from astrocytoma cells. Brain Res Mol Brain Res 121:146–150PubMedCrossRef
14.
go back to reference Samuel W, Nagineni CN, Kutty RK, Parks WT, Gordon JS, Prouty SM, Hooks JJ, Wiggert B (2002) Transforming growth factor-beta regulates stearoyl coenzyme A desaturase expression through a SMAD-signaling pathway. J Biol Chem 277:59–66PubMedCrossRef Samuel W, Nagineni CN, Kutty RK, Parks WT, Gordon JS, Prouty SM, Hooks JJ, Wiggert B (2002) Transforming growth factor-beta regulates stearoyl coenzyme A desaturase expression through a SMAD-signaling pathway. J Biol Chem 277:59–66PubMedCrossRef
15.
go back to reference Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623PubMedCrossRef Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623PubMedCrossRef
16.
go back to reference Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804PubMedCrossRef Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804PubMedCrossRef
17.
go back to reference Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J (2001) Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech 52:354–362PubMedCrossRef Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J (2001) Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech 52:354–362PubMedCrossRef
19.
go back to reference Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, Noguera I, Rifkin DB (1997) TGF-beta latency: Biological significance and mechanisms of activation. Stem Cells 15:190–197PubMedCrossRef Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, Noguera I, Rifkin DB (1997) TGF-beta latency: Biological significance and mechanisms of activation. Stem Cells 15:190–197PubMedCrossRef
20.
go back to reference Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274:13586–13593PubMedCrossRef Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274:13586–13593PubMedCrossRef
21.
go back to reference Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471PubMedCrossRef Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471PubMedCrossRef
22.
go back to reference Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K (1998) SMAD proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17:4056–4065PubMedCrossRef Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K (1998) SMAD proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17:4056–4065PubMedCrossRef
24.
go back to reference Dai C, Liu Y (2004) Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing SMAD transcriptional corepressor TGIF. J Am Soc Nephrol 15:1402–1412PubMedCrossRef Dai C, Liu Y (2004) Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing SMAD transcriptional corepressor TGIF. J Am Soc Nephrol 15:1402–1412PubMedCrossRef
25.
go back to reference Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T (1987) Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 224:311–316PubMedCrossRef Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T (1987) Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 224:311–316PubMedCrossRef
26.
go back to reference Defacque H, Piquemal D, Basset A, Marti J, Commes T (1999) Transforming growth factor-beta 1 is an autocrine mediator of U937 cell growth arrest and differentiation induced by vitamin D3 and retinoids. J Cell Physiol 178:109–119PubMedCrossRef Defacque H, Piquemal D, Basset A, Marti J, Commes T (1999) Transforming growth factor-beta 1 is an autocrine mediator of U937 cell growth arrest and differentiation induced by vitamin D3 and retinoids. J Cell Physiol 178:109–119PubMedCrossRef
27.
go back to reference Zhang X, Yang J, Li Y, Liu Y (2005) Both Sp1 and SMAD participate in mediating TGF-beta 1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288:F16–F26PubMedCrossRef Zhang X, Yang J, Li Y, Liu Y (2005) Both Sp1 and SMAD participate in mediating TGF-beta 1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288:F16–F26PubMedCrossRef
28.
go back to reference Bortz J, Lienert G, Boehnke K (2000) Verteilungsfreie Methoden in der Biostatistik. Springer Verlag, Berlin Bortz J, Lienert G, Boehnke K (2000) Verteilungsfreie Methoden in der Biostatistik. Springer Verlag, Berlin
29.
go back to reference Krummel TM, Michna BA, Thomas BL, Sporn MB, Nelson JM, Salzberg AM, Cohen IK, Diegelmann RF (1988) Transforming growth factor beta (TGF-beta) induces fibrosis in a fetal wound model. J Pediatr Surg 23:647–652PubMedCrossRef Krummel TM, Michna BA, Thomas BL, Sporn MB, Nelson JM, Salzberg AM, Cohen IK, Diegelmann RF (1988) Transforming growth factor beta (TGF-beta) induces fibrosis in a fetal wound model. J Pediatr Surg 23:647–652PubMedCrossRef
30.
go back to reference Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339:213–214PubMedCrossRef Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339:213–214PubMedCrossRef
31.
go back to reference Naim R, Sadick H, Bayerl C, Riedel F, Schafer C, Bran G, Hormann K (2005) Hepatocyte growth factor/scatter factor induces VEGF in human external auditory canal cholesteatoma cell culture. Int J Mol Med 15:67–71PubMed Naim R, Sadick H, Bayerl C, Riedel F, Schafer C, Bran G, Hormann K (2005) Hepatocyte growth factor/scatter factor induces VEGF in human external auditory canal cholesteatoma cell culture. Int J Mol Med 15:67–71PubMed
32.
go back to reference Ito W, Kanehiro A, Matsumoto K, Hirano A, Ono K, Maruyama H, Kataoka M, Nakamura T, Gelfand EW, Tanimoto M (2005) Hepatocyte growth factor attenuates airway hyperresponsiveness, inflammation, and remodeling. Am J Respir Cell Mol Biol 32:268–280PubMedCrossRef Ito W, Kanehiro A, Matsumoto K, Hirano A, Ono K, Maruyama H, Kataoka M, Nakamura T, Gelfand EW, Tanimoto M (2005) Hepatocyte growth factor attenuates airway hyperresponsiveness, inflammation, and remodeling. Am J Respir Cell Mol Biol 32:268–280PubMedCrossRef
33.
go back to reference Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, Akasaka Y, Ishii T, Jimbow K (2004) Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res 120:47–55PubMedCrossRef Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, Akasaka Y, Ishii T, Jimbow K (2004) Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res 120:47–55PubMedCrossRef
34.
go back to reference Naim R, Shen T, Riedel F, Bran G, Sadick H, Hormann K (2005) Regulation of apoptosis in external auditory canal cholesteatoma by hepatocyte growth factor/scatter factor. ORL J Otorhinolaryngol Relat Spec 67:45–50PubMed Naim R, Shen T, Riedel F, Bran G, Sadick H, Hormann K (2005) Regulation of apoptosis in external auditory canal cholesteatoma by hepatocyte growth factor/scatter factor. ORL J Otorhinolaryngol Relat Spec 67:45–50PubMed
35.
go back to reference Messadi DV, Le A, Berg S, Jewett A, Wen Z, Kelly P, Bertolami CN (1999) Expression of apoptosis-associated genes by human dermal scar fibroblasts. Wound Repair Regen 7:511–517PubMedCrossRef Messadi DV, Le A, Berg S, Jewett A, Wen Z, Kelly P, Bertolami CN (1999) Expression of apoptosis-associated genes by human dermal scar fibroblasts. Wound Repair Regen 7:511–517PubMedCrossRef
36.
go back to reference Nagata M, Takenaka H, Shibagaki R, Kishimoto S (1999) Apoptosis and p53 protein expression increase in the process of burn wound healing in guinea-pig skin. Br J Dermatol 140:829–838PubMedCrossRef Nagata M, Takenaka H, Shibagaki R, Kishimoto S (1999) Apoptosis and p53 protein expression increase in the process of burn wound healing in guinea-pig skin. Br J Dermatol 140:829–838PubMedCrossRef
37.
go back to reference Akasaka Y, Ishikawa Y, Ono I, Fujita K, Masuda T, Asuwa N, Inuzuka K, Kiguchi H, Ishii T (2000) Enhanced expression of caspase-3 in hypertrophic scars and keloid: Induction of caspase-3 and apoptosis in keloid fibroblasts in vitro. Lab Invest 80:345–357PubMed Akasaka Y, Ishikawa Y, Ono I, Fujita K, Masuda T, Asuwa N, Inuzuka K, Kiguchi H, Ishii T (2000) Enhanced expression of caspase-3 in hypertrophic scars and keloid: Induction of caspase-3 and apoptosis in keloid fibroblasts in vitro. Lab Invest 80:345–357PubMed
38.
go back to reference Akasaka Y, Fujita K, Ishikawa Y, Asuwa N, Inuzuka K, Ishihara M, Ito M, Masuda T, Akishima Y, Zhang L, Ito K, Ishii T (2001) Detection of apoptosis in keloids and a comparative study on apoptosis between keloids, hypertrophic scars, normal healed flat scars, and dermatofibroma. Wound Repair Regen 9:501–506PubMedCrossRef Akasaka Y, Fujita K, Ishikawa Y, Asuwa N, Inuzuka K, Ishihara M, Ito M, Masuda T, Akishima Y, Zhang L, Ito K, Ishii T (2001) Detection of apoptosis in keloids and a comparative study on apoptosis between keloids, hypertrophic scars, normal healed flat scars, and dermatofibroma. Wound Repair Regen 9:501–506PubMedCrossRef
39.
go back to reference Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H (1995) Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 104:958–963PubMedCrossRef Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H (1995) Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 104:958–963PubMedCrossRef
40.
go back to reference Border WA, Ruoslahti E (1992) Transforming growth factor-beta in disease: The dark side of tissue repair. J Clin Invest 90:1–7PubMedCrossRef Border WA, Ruoslahti E (1992) Transforming growth factor-beta in disease: The dark side of tissue repair. J Clin Invest 90:1–7PubMedCrossRef
41.
go back to reference Shah M, Foreman DM, Ferguson MW (1994) Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 107(Pt 5):1137–1157PubMed Shah M, Foreman DM, Ferguson MW (1994) Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 107(Pt 5):1137–1157PubMed
42.
go back to reference Border WA, Ruoslahti E (1990) Transforming growth factor-beta 1 induces extracellular matrix formation in glomerulonephritis. Cell Differ Dev 32:425–431PubMedCrossRef Border WA, Ruoslahti E (1990) Transforming growth factor-beta 1 induces extracellular matrix formation in glomerulonephritis. Cell Differ Dev 32:425–431PubMedCrossRef
43.
go back to reference Wahl SM, Allen JB, Costa GL, Wong HL, Dasch JR (1993) Reversal of acute and chronic synovial inflammation by antitransforming growth factor beta. J Exp Med 177:225–230PubMedCrossRef Wahl SM, Allen JB, Costa GL, Wong HL, Dasch JR (1993) Reversal of acute and chronic synovial inflammation by antitransforming growth factor beta. J Exp Med 177:225–230PubMedCrossRef
44.
go back to reference Beck LS, Deguzman L, Lee WP, Xu Y, McFatridge LA, Amento EP (1991) TGF-beta 1 accelerates wound healing: Reversal of steroid-impaired healing in rats and rabbits. Growth Factors 5:295–304PubMedCrossRef Beck LS, Deguzman L, Lee WP, Xu Y, McFatridge LA, Amento EP (1991) TGF-beta 1 accelerates wound healing: Reversal of steroid-impaired healing in rats and rabbits. Growth Factors 5:295–304PubMedCrossRef
45.
go back to reference Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF (1989) Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: Possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci USA 86:2229–2233PubMedCrossRef Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF (1989) Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: Possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci USA 86:2229–2233PubMedCrossRef
46.
go back to reference Bernstein EF, Harisiadis L, Salomon G, Norton J, Sollberg S, Uitto J, Glatstein E, Glass J, Talbot T, Russo A (1991) Transforming growth factor-beta improves healing of radiation-impaired wounds. J Invest Dermatol 97:430–434PubMedCrossRef Bernstein EF, Harisiadis L, Salomon G, Norton J, Sollberg S, Uitto J, Glatstein E, Glass J, Talbot T, Russo A (1991) Transforming growth factor-beta improves healing of radiation-impaired wounds. J Invest Dermatol 97:430–434PubMedCrossRef
47.
go back to reference Fujiwara M, Muragaki Y, Ooshima A (2005) Upregulation of transforming growth factor-beta 1 and vascular endothelial growth factor in cultured keloid fibroblasts: Relevance to angiogenic activity. Arch Dermatol Res 297:161–169PubMedCrossRef Fujiwara M, Muragaki Y, Ooshima A (2005) Upregulation of transforming growth factor-beta 1 and vascular endothelial growth factor in cultured keloid fibroblasts: Relevance to angiogenic activity. Arch Dermatol Res 297:161–169PubMedCrossRef
48.
go back to reference Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, Aghaloo TL, Kelly AP, Bertolami CN (2004) Elevated vascular endothelial growth factor in keloids: Relevance to tissue fibrosis. Cells Tissues Organs 176:87–94PubMedCrossRef Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, Aghaloo TL, Kelly AP, Bertolami CN (2004) Elevated vascular endothelial growth factor in keloids: Relevance to tissue fibrosis. Cells Tissues Organs 176:87–94PubMedCrossRef
Metadata
Title
Transforming Growth Factor-β1-Antisense Modulates the Expression of Hepatocyte Growth Factor/Scatter Factor in Keloid Fibroblast Cell Culture
Authors
R. Naim
A. Naumann
J. Barnes
A. Sauter
K. Hormann
D. Merkel
W. Aust
T. Braun
M. Bloching
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
Aesthetic Plastic Surgery / Issue 2/2008
Print ISSN: 0364-216X
Electronic ISSN: 1432-5241
DOI
https://doi.org/10.1007/s00266-007-9078-6

Other articles of this Issue 2/2008

Aesthetic Plastic Surgery 2/2008 Go to the issue