Skip to main content
Top
Published in: International Orthopaedics 3/2019

01-03-2019 | Review

Biophysical stimulation of bone and cartilage: state of the art and future perspectives

Authors: Leo Massari, Franco Benazzo, Francesco Falez, Dario Perugia, Luca Pietrogrande, Stefania Setti, Raffaella Osti, Enrico Vaienti, Carlo Ruosi, Ruggero Cadossi

Published in: International Orthopaedics | Issue 3/2019

Login to get access

Abstract

Introduction

Biophysical stimulation is a non-invasive therapy used in orthopaedic practice to increase and enhance reparative and anabolic activities of tissue.

Methods

A sistematic web-based search for papers was conducted using the following titles: (1) pulsed electromagnetic field (PEMF), capacitively coupled electrical field (CCEF), low intensity pulsed ultrasound system (LIPUS) and biophysical stimulation; (2) bone cells, bone tissue, fracture, non-union, prosthesis and vertebral fracture; and (3) chondrocyte, synoviocytes, joint chondroprotection, arthroscopy and knee arthroplasty.

Results

Pre-clinical studies have shown that the site of interaction of biophysical stimuli is the cell membrane. Its effect on bone tissue is to increase proliferation, synthesis and release of growth factors. On articular cells, it creates a strong A2A and A3 adenosine-agonist effect inducing an anti-inflammatory and chondroprotective result. In treated animals, it has been shown that the mineralisation rate of newly formed bone is almost doubled, the progression of the osteoarthritic cartilage degeneration is inhibited and quality of cartilage is preserved. Biophysical stimulation has been used in the clinical setting to promote the healing of fractures and non-unions. It has been successfully used on joint pathologies for its beneficial effect on improving function in early OA and after knee surgery to limit the inflammation of periarticular tissues.

Discussion

The pooled result of the studies in this review revealed the efficacy of biophysical stimulation for bone healing and joint chondroprotection based on proven methodological quality.

Conclusion

The orthopaedic community has played a central role in the development and understanding of the importance of the physical stimuli. Biophysical stimulation requires care and precision in use if it is to ensure the success expected of it by physicians and patients.
Literature
1.
go back to reference Zhou J, Wang JQ, Ge BF et al (2014) Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 35(1):30–38PubMed Zhou J, Wang JQ, Ge BF et al (2014) Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 35(1):30–38PubMed
2.
go back to reference Clark CC, Wang W, Brighton CT (2014) Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J Orthop Res 32(7):894–903PubMed Clark CC, Wang W, Brighton CT (2014) Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J Orthop Res 32(7):894–903PubMed
3.
go back to reference Brighton CT, Okereke E, Pollack SR, Clark CC (1992) In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clin Orthop Relat Res (285):255–62 Brighton CT, Okereke E, Pollack SR, Clark CC (1992) In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clin Orthop Relat Res (285):255–62
4.
go back to reference De Mattei M, Caruso A, Traina GC et al (1999) Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20(3):177–182PubMed De Mattei M, Caruso A, Traina GC et al (1999) Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20(3):177–182PubMed
5.
go back to reference Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK (2004) Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res (418):253–9 Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK (2004) Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res (418):253–9
6.
go back to reference Lohmann CH, Schwartz Z, Liu Y et al (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18(4):637–646PubMed Lohmann CH, Schwartz Z, Liu Y et al (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18(4):637–646PubMed
7.
go back to reference Zhou J, Ming LG, Ge BF et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49(4):753–761PubMed Zhou J, Ming LG, Ge BF et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49(4):753–761PubMed
8.
go back to reference Wang Z, Clark CC, Brighton CT (2006) Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am 88(5):1053–1065PubMed Wang Z, Clark CC, Brighton CT (2006) Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am 88(5):1053–1065PubMed
9.
go back to reference Hartig M, Joos U, Wiesmann HP (2000) Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J 29(7):499–506PubMed Hartig M, Joos U, Wiesmann HP (2000) Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J 29(7):499–506PubMed
10.
go back to reference Veronesi F, Fini M, Sartori M, Parrilli A, Martini L, Tschon M (2018) Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 77:106–115 Veronesi F, Fini M, Sartori M, Parrilli A, Martini L, Tschon M (2018) Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 77:106–115
11.
go back to reference Chang W, Chen LT, Sun JS et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25(6):457–465PubMed Chang W, Chen LT, Sun JS et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25(6):457–465PubMed
12.
go back to reference Aaron RK, Boyan BD, Ciombor DM et al (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37 Aaron RK, Boyan BD, Ciombor DM et al (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37
13.
go back to reference Varani K, De Mattei M, Vincenzi F et al (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16:292–304PubMed Varani K, De Mattei M, Vincenzi F et al (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr Cartil 16:292–304PubMed
14.
go back to reference De Mattei M, Varani K, Masieri FF et al (2009) Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthr Cartil 17:252–262PubMed De Mattei M, Varani K, Masieri FF et al (2009) Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthr Cartil 17:252–262PubMed
15.
go back to reference Ongaro A, Varani K, Masieri FF et al (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227:2461–2469PubMed Ongaro A, Varani K, Masieri FF et al (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227:2461–2469PubMed
17.
go back to reference De Mattei M, Fini M, Setti S et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil 15(2):163–168PubMed De Mattei M, Fini M, Setti S et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil 15(2):163–168PubMed
18.
go back to reference Ongaro A, Pellati A, Masieri FF et al (2011) Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551PubMed Ongaro A, Pellati A, Masieri FF et al (2011) Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551PubMed
19.
go back to reference De Mattei M, Pellati A, Pasello M et al (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil 12(10):793–800PubMed De Mattei M, Pellati A, Pasello M et al (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil 12(10):793–800PubMed
20.
go back to reference De Mattei M, Pasello M, Pellati A et al (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159PubMed De Mattei M, Pasello M, Pellati A et al (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159PubMed
21.
go back to reference Ongaro A, Pellati A, Setti S et al (2015) Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 9(12):E229–E238PubMed Ongaro A, Pellati A, Setti S et al (2015) Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 9(12):E229–E238PubMed
22.
go back to reference Bassett CA, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577PubMed Bassett CA, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577PubMed
23.
go back to reference De Haas WG, Lazarovici MA, Morrison DM (1979) The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin Orthop Relat Res 145:245–251 De Haas WG, Lazarovici MA, Morrison DM (1979) The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin Orthop Relat Res 145:245–251
24.
go back to reference Canè V, Botti P, Soana S (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J Orthop Res 11:664–670PubMed Canè V, Botti P, Soana S (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J Orthop Res 11:664–670PubMed
25.
go back to reference Midura RJ, Ibiwoye MO, Powell KA et al (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046PubMed Midura RJ, Ibiwoye MO, Powell KA et al (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046PubMed
26.
go back to reference Brighton CT, Hozack WJ, Brager MD et al (1985) Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J Orthop Res 3:331–340PubMed Brighton CT, Hozack WJ, Brager MD et al (1985) Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields. J Orthop Res 3:331–340PubMed
27.
go back to reference Rijal KP, Kashimoto O, Sakurai M (1994) Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. J Orthop Res 12:262–267PubMed Rijal KP, Kashimoto O, Sakurai M (1994) Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. J Orthop Res 12:262–267PubMed
28.
go back to reference Duarte LR (1983) The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101:153–159PubMed Duarte LR (1983) The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101:153–159PubMed
29.
go back to reference Pilla AA, Mont MA, Nasser PR et al (1990) Noninvasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4:246–253PubMed Pilla AA, Mont MA, Nasser PR et al (1990) Noninvasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4:246–253PubMed
30.
go back to reference Fini M, Torricelli P, Giavaresi G et al (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62(10):709–715PubMed Fini M, Torricelli P, Giavaresi G et al (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62(10):709–715PubMed
31.
go back to reference Benazzo F, Cadossi M, Cavani F et al (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26(5):631–642PubMed Benazzo F, Cadossi M, Cavani F et al (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26(5):631–642PubMed
32.
go back to reference Veronesi F, Cadossi M, Giavaresi G et al (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord 16:233PubMedPubMedCentral Veronesi F, Cadossi M, Giavaresi G et al (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord 16:233PubMedPubMedCentral
33.
go back to reference Borsalino G, Bagnacani M, Bettati E et al (1988) Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res 237:256–263 Borsalino G, Bagnacani M, Bettati E et al (1988) Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res 237:256–263
34.
go back to reference Mammi GI, Rocchi R, Cadossi R et al (1993) The electrical stimulation of tibial osteotomies. Double-blind study. Clin Orthop Relat Res 288:246–253 Mammi GI, Rocchi R, Cadossi R et al (1993) The electrical stimulation of tibial osteotomies. Double-blind study. Clin Orthop Relat Res 288:246–253
35.
go back to reference Capanna R, Donati D, Masetti C et al (1994) Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Relat Res 30:213–221 Capanna R, Donati D, Masetti C et al (1994) Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Relat Res 30:213–221
36.
go back to reference Hinsenkamp M, Burny F, Donkerwolcke M et al (1984) Electromagnetic stimulation of fresh fractures treated with Hoffmann external fixation. Orthopedics 7:411–416PubMed Hinsenkamp M, Burny F, Donkerwolcke M et al (1984) Electromagnetic stimulation of fresh fractures treated with Hoffmann external fixation. Orthopedics 7:411–416PubMed
37.
go back to reference Fontanesi G, Traina GC, Giancecchi F et al (1986) La lenta evoluzione del processo riparativo di una frattura puo’ essere prevenuta? GIOT XII(3):389–404 Fontanesi G, Traina GC, Giancecchi F et al (1986) La lenta evoluzione del processo riparativo di una frattura puo’ essere prevenuta? GIOT XII(3):389–404
38.
go back to reference Faldini C, Cadossi M, Luciani D et al (2010) Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: prospective randomized double-blind study. Current Orthopaedic Practice 21(3):282–7 Faldini C, Cadossi M, Luciani D et al (2010) Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: prospective randomized double-blind study. Current Orthopaedic Practice 21(3):282–7
39.
go back to reference Benazzo F, Mosconi M, Beccarisi G et al (1995) Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res 310:145–149 Benazzo F, Mosconi M, Beccarisi G et al (1995) Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res 310:145–149
40.
go back to reference Heckman JD, Ryaby JP, McCabe J et al (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76(1):26–34PubMed Heckman JD, Ryaby JP, McCabe J et al (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76(1):26–34PubMed
41.
go back to reference Kristiansen TK, Ryaby JP, McCabe J et al (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 79(7):961–973PubMed Kristiansen TK, Ryaby JP, McCabe J et al (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 79(7):961–973PubMed
42.
go back to reference Mayr E, Rudzki MM, Rudzki M et al (2000) Does low intensity, pulsed ultrasound speed healing of scaphoid fractures? Handchir Mikrochir Plast Chir 32(2):115–122PubMed Mayr E, Rudzki MM, Rudzki M et al (2000) Does low intensity, pulsed ultrasound speed healing of scaphoid fractures? Handchir Mikrochir Plast Chir 32(2):115–122PubMed
43.
go back to reference Leung KS, Lee WS, Tsui HF et al (2004 Mar) Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 30(3):389–395PubMed Leung KS, Lee WS, Tsui HF et al (2004 Mar) Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 30(3):389–395PubMed
44.
go back to reference Simonis RB, Parnell EJ, Ray PS et al (2003) Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury 34(5):357–362PubMed Simonis RB, Parnell EJ, Ray PS et al (2003) Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury 34(5):357–362PubMed
45.
go back to reference Traina GC, Fontanesi G, Costa P et al (1991) Effect of electromagnetic stimulation on patients suffering from nonunion. A retrospective study with a control group. J Bioelectricity 10:101–117 Traina GC, Fontanesi G, Costa P et al (1991) Effect of electromagnetic stimulation on patients suffering from nonunion. A retrospective study with a control group. J Bioelectricity 10:101–117
46.
go back to reference Rispoli FP, Corolla FM, Mussner R (1988) The use of low frequency pulsing electromagnetic fields in patients with painful hip prosthesis. J Bioelectricity 7:181 Rispoli FP, Corolla FM, Mussner R (1988) The use of low frequency pulsing electromagnetic fields in patients with painful hip prosthesis. J Bioelectricity 7:181
47.
go back to reference Kennedy WF, Roberts CG, Zuege RC et al (1993) Use of pulsed electromagnetic fields in treatment of loosened cemented hip prostheses. A double-blind trial. Clin Orthop 286:198–205 Kennedy WF, Roberts CG, Zuege RC et al (1993) Use of pulsed electromagnetic fields in treatment of loosened cemented hip prostheses. A double-blind trial. Clin Orthop 286:198–205
48.
go back to reference Dallari D, Fini M, Giavaresi G et al (2009) Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: a randomized prospective double-blind study. Bioelectromagnetics 30(6):423–430PubMed Dallari D, Fini M, Giavaresi G et al (2009) Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: a randomized prospective double-blind study. Bioelectromagnetics 30(6):423–430PubMed
49.
go back to reference Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15(7):708–712PubMed Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15(7):708–712PubMed
50.
go back to reference Linovitz RJ, Pathria M, Bernhardt M et al (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine (Phila Pa 1976) 27(13):1383–1389 discussion 1389 Linovitz RJ, Pathria M, Bernhardt M et al (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine (Phila Pa 1976) 27(13):1383–1389 discussion 1389
51.
go back to reference Goodwin CB, Brighton CT, Guyer RD et al (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24(13):1349–1356PubMed Goodwin CB, Brighton CT, Guyer RD et al (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24(13):1349–1356PubMed
52.
go back to reference Rossini M, Viapiana O, Gatti D et al (2010) Capacitively coupled electric field for pain relief in patients with vertebral fractures and chronic pain. Clin Orthop Relat Res 468(3):735–740PubMed Rossini M, Viapiana O, Gatti D et al (2010) Capacitively coupled electric field for pain relief in patients with vertebral fractures and chronic pain. Clin Orthop Relat Res 468(3):735–740PubMed
53.
go back to reference Massari L (2011) Algorithm for employing physical forces in metabolic bone diseases. Aging Clin Exp Res 23(Suppl. to No. 2):52–53 Massari L (2011) Algorithm for employing physical forces in metabolic bone diseases. Aging Clin Exp Res 23(Suppl. to No. 2):52–53
54.
go back to reference Piazzolla A, Solarino G, Bizzoca D et al (2015) Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents 29(3):637–646PubMed Piazzolla A, Solarino G, Bizzoca D et al (2015) Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents 29(3):637–646PubMed
55.
go back to reference Santori FS, Vitullo A, Montemurro G (1999) Necrosi asettica della testa del femore: associazione tra intervento di svuotamento e innesti autoplastici e CEMP. In: Traina GC, Pipino F, Massari L, Molfetta L, Cadossi R (eds) Modulazione biofisica della osteogenesi mediante campi elettromagnetici pulsati, vol II. Walter Berti Editore, Lugo di Romagna (Ravenna), pp 93–102 Santori FS, Vitullo A, Montemurro G (1999) Necrosi asettica della testa del femore: associazione tra intervento di svuotamento e innesti autoplastici e CEMP. In: Traina GC, Pipino F, Massari L, Molfetta L, Cadossi R (eds) Modulazione biofisica della osteogenesi mediante campi elettromagnetici pulsati, vol II. Walter Berti Editore, Lugo di Romagna (Ravenna), pp 93–102
56.
go back to reference Massari L, Fini M, Cadossi R et al (2006) Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3):56–60PubMed Massari L, Fini M, Cadossi R et al (2006) Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3):56–60PubMed
57.
go back to reference Cebrián JL, Milano GL, Alberto F et al (2014) Role of electromagnetic stimulation in the treatment of osteonecrosis of the femoral head in early stages. J Biomed Sci Eng 7:252–257 Cebrián JL, Milano GL, Alberto F et al (2014) Role of electromagnetic stimulation in the treatment of osteonecrosis of the femoral head in early stages. J Biomed Sci Eng 7:252–257
58.
go back to reference Zorzi C, Dall’Oca C, Cadossi R et al (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15(7):830–834PubMed Zorzi C, Dall’Oca C, Cadossi R et al (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15(7):830–834PubMed
59.
go back to reference Benazzo F, Zanon G, Pederzini L et al (2008) Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. Knee Surg Sports Traumatol Arthrosc 16(6):595–601PubMedPubMedCentral Benazzo F, Zanon G, Pederzini L et al (2008) Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. Knee Surg Sports Traumatol Arthrosc 16(6):595–601PubMedPubMedCentral
60.
go back to reference Cadossi M, Buda RE, Ramponi L et al (2014) Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int 35(10):981–987PubMed Cadossi M, Buda RE, Ramponi L et al (2014) Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int 35(10):981–987PubMed
61.
go back to reference Collarile M, Sambri A, Lullini G et al (2018) Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 26(4):1223–1229PubMed Collarile M, Sambri A, Lullini G et al (2018) Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 26(4):1223–1229PubMed
62.
go back to reference Moretti B, Notarnicola A, Moretti L et al (2012) I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord 13(1):88PubMedPubMedCentral Moretti B, Notarnicola A, Moretti L et al (2012) I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord 13(1):88PubMedPubMedCentral
63.
go back to reference Adravanti P, Nicoletti S, Setti S et al (2014) Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop 38(2):397–403PubMed Adravanti P, Nicoletti S, Setti S et al (2014) Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop 38(2):397–403PubMed
64.
go back to reference Gobbi A, Lad D, Petrera M et al (2014) Symptomatic early osteoarthritis of the knee treated with pulsed electromagnetic fields: two-year follow-up. Cartilage 5(2):76–83 Gobbi A, Lad D, Petrera M et al (2014) Symptomatic early osteoarthritis of the knee treated with pulsed electromagnetic fields: two-year follow-up. Cartilage 5(2):76–83
65.
go back to reference Iammarrone Servodio C, Cadossi M, Sambri A et al (2016) Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics 37(2):81–88 Iammarrone Servodio C, Cadossi M, Sambri A et al (2016) Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. Bioelectromagnetics 37(2):81–88
66.
go back to reference Marcheggiani Muccioli GM, Grassi A, Setti S et al (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82(3):530–537PubMed Marcheggiani Muccioli GM, Grassi A, Setti S et al (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82(3):530–537PubMed
67.
go back to reference de Girolamo L, Viganò M, Galliera E et al (2015) In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 23(11):3443–3453PubMed de Girolamo L, Viganò M, Galliera E et al (2015) In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 23(11):3443–3453PubMed
68.
go back to reference Marmotti A, Peretti MP, Mattia S et al (2018) Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair—an in vitro study. Stem Cells Int. Research Article ID 9048237, https://doi.org/10.1155/2018/9048237 Marmotti A, Peretti MP, Mattia S et al (2018) Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair—an in vitro study. Stem Cells Int. Research Article ID 9048237, https://​doi.​org/​10.​1155/​2018/​9048237
69.
go back to reference Capone F, Dileone M, Profice P et al (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm 116(3):257–265PubMed Capone F, Dileone M, Profice P et al (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm 116(3):257–265PubMed
70.
go back to reference Capone F, Liberti M, Apollonio F et al (2017) An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke. Sci Rep 7(1):12145PubMedPubMedCentral Capone F, Liberti M, Apollonio F et al (2017) An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke. Sci Rep 7(1):12145PubMedPubMedCentral
71.
go back to reference Yuan J, Xin F, Jiang W (2018) Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem 46(4):1581–1594PubMed Yuan J, Xin F, Jiang W (2018) Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem 46(4):1581–1594PubMed
72.
go back to reference Huang AJ, Gemperli MP, Bergthold L et al (2004) Health plans’ coverage determinations for technology-based interventions: the case of electrical bone growth stimulation. Am J Manag Care 10(12):957–962PubMed Huang AJ, Gemperli MP, Bergthold L et al (2004) Health plans’ coverage determinations for technology-based interventions: the case of electrical bone growth stimulation. Am J Manag Care 10(12):957–962PubMed
73.
go back to reference Busse JW, Morton E, Lacchetti C et al (2008) Current management of tibial shaft fractures: a survey of 450 Canadian orthopedic trauma surgeons. Acta Orthop 79(5):689–694PubMed Busse JW, Morton E, Lacchetti C et al (2008) Current management of tibial shaft fractures: a survey of 450 Canadian orthopedic trauma surgeons. Acta Orthop 79(5):689–694PubMed
74.
go back to reference Iwasa K, Reddi AH (2018) Pulsed electromagnetic fields and tissue engineering of the joints. Tissue Eng Part B Rev 24(2):144–154PubMedPubMedCentral Iwasa K, Reddi AH (2018) Pulsed electromagnetic fields and tissue engineering of the joints. Tissue Eng Part B Rev 24(2):144–154PubMedPubMedCentral
Metadata
Title
Biophysical stimulation of bone and cartilage: state of the art and future perspectives
Authors
Leo Massari
Franco Benazzo
Francesco Falez
Dario Perugia
Luca Pietrogrande
Stefania Setti
Raffaella Osti
Enrico Vaienti
Carlo Ruosi
Ruggero Cadossi
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 3/2019
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-018-4274-3

Other articles of this Issue 3/2019

International Orthopaedics 3/2019 Go to the issue