Skip to main content
Top
Published in: International Orthopaedics 9/2014

01-09-2014 | Review Article

Nanobiotechnology and bone regeneration: a mini-review

Authors: Nadomir Gusić, Alan Ivković, John VaFaye, Andreja Vukasović, Jana Ivković, Damir Hudetz, Saša Janković

Published in: International Orthopaedics | Issue 9/2014

Login to get access

Abstract

The purpose of this paper is to review current developments in bone tissue engineering, with special focus on the promising role of nanobiotechnology. This unique fusion between nanotechnology and biotechnology offers unprecedented possibilities in studying and modulating biological processes on a molecular and atomic scale. First we discuss the multiscale hierarchical structure of bone and its implication on the design of new scaffolds and delivery systems. Then we briefly present different types of nanostructured scaffolds, and finally we conclude with nanoparticle delivery systems and their potential use in promoting bone regeneration. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of nanobiotechnology and bone regeneration.
Literature
1.
2.
go back to reference Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42PubMedCrossRef Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42PubMedCrossRef
3.
go back to reference Yang Y (2009) Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 19(3):197–218PubMedCrossRef Yang Y (2009) Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 19(3):197–218PubMedCrossRef
4.
go back to reference Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944 Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944
5.
go back to reference Hernigou P, Pariat J, Queinnec S, Homma Y, Lachaniette CH, Chevallier N et al (2014) Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop Hernigou P, Pariat J, Queinnec S, Homma Y, Lachaniette CH, Chevallier N et al (2014) Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop
6.
go back to reference Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498PubMedCrossRef Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498PubMedCrossRef
7.
go back to reference Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J et al (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38(3):635–647PubMedCrossRef Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J et al (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38(3):635–647PubMedCrossRef
8.
11.
go back to reference Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330PubMedCrossRef Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330PubMedCrossRef
12.
go back to reference Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732):275–278PubMedCrossRef Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732):275–278PubMedCrossRef
13.
go back to reference Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616PubMedCrossRef Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616PubMedCrossRef
14.
go back to reference Chen PY, Lin AY, Lin YS, Seki Y, Stokes AG, Peyras J et al (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226PubMedCrossRef Chen PY, Lin AY, Lin YS, Seki Y, Stokes AG, Peyras J et al (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226PubMedCrossRef
15.
16.
go back to reference Landis WJ, Silver FH (2009) Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189(1–4):20–24PubMedCrossRef Landis WJ, Silver FH (2009) Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189(1–4):20–24PubMedCrossRef
17.
go back to reference Wiesmann HP, Meyer U, Plate U, Höhling HJ (2005) Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 242:121–156PubMedCrossRef Wiesmann HP, Meyer U, Plate U, Höhling HJ (2005) Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 242:121–156PubMedCrossRef
18.
go back to reference Gupta HS, Wagermaier W, Zickler GA, Raz-Ben Aroush D, Funari SS, Roschger P et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10):2108–2111PubMedCrossRef Gupta HS, Wagermaier W, Zickler GA, Raz-Ben Aroush D, Funari SS, Roschger P et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10):2108–2111PubMedCrossRef
19.
go back to reference Garg T, Singh O, Arora S, Murthy R (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1):1–63PubMedCrossRef Garg T, Singh O, Arora S, Murthy R (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1):1–63PubMedCrossRef
20.
go back to reference Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A et al (2009) The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop 33(3):821–828PubMedCentralPubMedCrossRef Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A et al (2009) The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop 33(3):821–828PubMedCentralPubMedCrossRef
21.
go back to reference Zimmerman EA, Barth HD, Ritchie RO (2012) On the multiscale origins of fracture resistance in human bone and its biological degradation. JOM 64:486–493CrossRef Zimmerman EA, Barth HD, Ritchie RO (2012) On the multiscale origins of fracture resistance in human bone and its biological degradation. JOM 64:486–493CrossRef
22.
23.
go back to reference Launey ME, Munch E, Alsem DH, Barth HB, Saiz E, Tomsia AP et al (2009) Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater 57:2919–2932CrossRef Launey ME, Munch E, Alsem DH, Barth HB, Saiz E, Tomsia AP et al (2009) Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater 57:2919–2932CrossRef
25.
go back to reference Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29(1):103–115PubMedCentralPubMedCrossRef Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29(1):103–115PubMedCentralPubMedCrossRef
26.
go back to reference Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32CrossRef Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32CrossRef
28.
go back to reference Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 54(2):284–293PubMedCrossRef Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 54(2):284–293PubMedCrossRef
29.
go back to reference Qian J, Xu W, Yong X, Jin X, Zhang W (2014) Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 36:95–101PubMedCrossRef Qian J, Xu W, Yong X, Jin X, Zhang W (2014) Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 36:95–101PubMedCrossRef
30.
go back to reference Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459PubMedCrossRef Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459PubMedCrossRef
31.
go back to reference Le X, Poinern GE, Ali N, Berry CM, Fawcett D (2013) Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013:782549. doi:10.1155/2013/782549 PubMedCentralPubMed Le X, Poinern GE, Ali N, Berry CM, Fawcett D (2013) Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013:782549. doi:10.​1155/​2013/​782549 PubMedCentralPubMed
32.
go back to reference Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD, Aitchison G (2004) Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobiosci 3(1):61–65CrossRef Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD, Aitchison G (2004) Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobiosci 3(1):61–65CrossRef
33.
go back to reference Biggs MJ, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CD et al (2009) Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A 91(1):195–208PubMedCrossRef Biggs MJ, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CD et al (2009) Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A 91(1):195–208PubMedCrossRef
34.
go back to reference Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34(1):59–74PubMedCrossRef Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34(1):59–74PubMedCrossRef
35.
go back to reference Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5(1):120–125PubMedCrossRef Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5(1):120–125PubMedCrossRef
36.
go back to reference Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL (2011) The influence of elasticity and surface roughness on myogenic and osteogenic differentiation of cells on silk-elastin. Biomaterials 32(34):8979–8989PubMedCentralPubMedCrossRef Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL (2011) The influence of elasticity and surface roughness on myogenic and osteogenic differentiation of cells on silk-elastin. Biomaterials 32(34):8979–8989PubMedCentralPubMedCrossRef
37.
go back to reference Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J, Luttge R et al (2012) In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine 8(3):308–317PubMedCrossRef Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J, Luttge R et al (2012) In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine 8(3):308–317PubMedCrossRef
38.
go back to reference Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739PubMedCrossRef Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739PubMedCrossRef
39.
go back to reference Tran N, Webster TJ (2009) Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):336–351PubMedCrossRef Tran N, Webster TJ (2009) Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):336–351PubMedCrossRef
40.
go back to reference Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6(8):3004–3012PubMedCrossRef Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6(8):3004–3012PubMedCrossRef
41.
go back to reference Hao W, Dong J, Jiang M, Wu J, Cui F, Zhou D (2010) Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop 34(8):1341–1349PubMedCentralPubMedCrossRef Hao W, Dong J, Jiang M, Wu J, Cui F, Zhou D (2010) Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop 34(8):1341–1349PubMedCentralPubMedCrossRef
42.
go back to reference Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12(4):575–587PubMedCrossRef Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12(4):575–587PubMedCrossRef
43.
go back to reference Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1):6–10PubMedCrossRef Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1):6–10PubMedCrossRef
44.
go back to reference Mafi P, Hindocha S, Mafi R, Khan WS (2012) Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering–a systematic review of the literature. Curr Stem Cell Res Ther 7(4):302–309PubMedCrossRef Mafi P, Hindocha S, Mafi R, Khan WS (2012) Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering–a systematic review of the literature. Curr Stem Cell Res Ther 7(4):302–309PubMedCrossRef
45.
go back to reference Li WJ, Cooper JA Jr, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385PubMedCrossRef Li WJ, Cooper JA Jr, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385PubMedCrossRef
46.
go back to reference Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32(5):388–397PubMedCrossRef Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32(5):388–397PubMedCrossRef
47.
go back to reference Xiao X, Liu R, Huang Q (2008) Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. J Mater Sci Mater Med 19(11):3429–3435PubMedCrossRef Xiao X, Liu R, Huang Q (2008) Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. J Mater Sci Mater Med 19(11):3429–3435PubMedCrossRef
48.
go back to reference Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70(1):129–138PubMedCrossRef Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70(1):129–138PubMedCrossRef
49.
go back to reference Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res A 96(1):75–82PubMedCrossRef Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res A 96(1):75–82PubMedCrossRef
50.
go back to reference Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2(2):e190PubMedCentralPubMedCrossRef Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2(2):e190PubMedCentralPubMedCrossRef
51.
go back to reference Marí-Buyé N, Luque T, Navajas D, Semino CE (2013) Development of a three-dimensional bone-like construct in a soft self-assembling peptide matrix. Tissue Eng Part A 19(7–8):870–881PubMedCentralPubMedCrossRef Marí-Buyé N, Luque T, Navajas D, Semino CE (2013) Development of a three-dimensional bone-like construct in a soft self-assembling peptide matrix. Tissue Eng Part A 19(7–8):870–881PubMedCentralPubMedCrossRef
52.
go back to reference Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD et al (2006) PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 15(10):903–910PubMedCrossRef Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD et al (2006) PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 15(10):903–910PubMedCrossRef
53.
go back to reference Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305–2317PubMedCentralPubMedCrossRef Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305–2317PubMedCentralPubMedCrossRef
54.
go back to reference Zhang S, Uludağ H (2009) Nanoparticulate systems for growth factor delivery. Pharm Res 26:1561–1580PubMedCrossRef Zhang S, Uludağ H (2009) Nanoparticulate systems for growth factor delivery. Pharm Res 26:1561–1580PubMedCrossRef
55.
go back to reference Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H (2007) Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 117(3):380–386PubMedCrossRef Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H (2007) Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 117(3):380–386PubMedCrossRef
56.
go back to reference Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131(4):703–712PubMedCrossRef Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131(4):703–712PubMedCrossRef
57.
go back to reference Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134PubMedCrossRef Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134PubMedCrossRef
58.
go back to reference Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR et al (2010) Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 16(5):1749–1759PubMedCentralPubMedCrossRef Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR et al (2010) Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 16(5):1749–1759PubMedCentralPubMedCrossRef
59.
go back to reference Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22(2):249–260PubMedCrossRef Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22(2):249–260PubMedCrossRef
60.
go back to reference Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90PubMedCentralPubMedCrossRef Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90PubMedCentralPubMedCrossRef
61.
go back to reference Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836PubMedCrossRef Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836PubMedCrossRef
62.
go back to reference Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193PubMedCentralPubMed Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193PubMedCentralPubMed
Metadata
Title
Nanobiotechnology and bone regeneration: a mini-review
Authors
Nadomir Gusić
Alan Ivković
John VaFaye
Andreja Vukasović
Jana Ivković
Damir Hudetz
Saša Janković
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 9/2014
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-014-2412-0

Other articles of this Issue 9/2014

International Orthopaedics 9/2014 Go to the issue