Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2020

Open Access 01-07-2020 | Original Article

Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy

Authors: Tali Voloshin, Noa Kaynan, Shiri Davidi, Yaara Porat, Anna Shteingauz, Rosa S. Schneiderman, Einav Zeevi, Mijal Munster, Roni Blat, Catherine Tempel Brami, Shay Cahal, Aviran Itzhaki, Moshe Giladi, Eilon D. Kirson, Uri Weinberg, Adrian Kinzel, Yoram Palti

Published in: Cancer Immunology, Immunotherapy | Issue 7/2020

Login to get access

Abstract

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100–300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.

Literature
  1. Vonderheide RH (2018) The immune revolution: a case for priming, not checkpoint. Cancer Cell 33:563–569. https://​doi.​org/​10.​1016/​j.​ccell.​2018.​03.​008 View ArticlePubMedPubMed Central
  2. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. https://​doi.​org/​10.​1016/​j.​ccell.​2015.​03.​001 View ArticlePubMedPubMed Central
  3. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://​doi.​org/​10.​1038/​nrc3239 View ArticlePubMedPubMed Central
  4. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://​doi.​org/​10.​1038/​nature13954 View ArticlePubMedPubMed Central
  5. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64:3288–3295View ArticlePubMed
  6. Giladi M, Schneiderman RS, Voloshin T et al (2015) Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci Rep 5:18046. https://​doi.​org/​10.​1038/​srep18046 View ArticlePubMedPubMed Central
  7. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD (2015) Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS ONE 10:e0125269. https://​doi.​org/​10.​1371/​journal.​pone.​0125269 View ArticlePubMedPubMed Central
  8. Kirson ED, Dbaly V, Tovarys F et al (2007) Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA 104:10152–10157. https://​doi.​org/​10.​1073/​pnas.​0702916104 View ArticlePubMedPubMed Central
  9. Porat Y, Giladi M, Schneiderman RS et al (2017) Determining the optimal inhibitory frequency for cancerous cells using tumor treating fields (TTFields). J Vis Exp. https://​doi.​org/​10.​3791/​55820 View ArticlePubMedPubMed Central
  10. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17:262–275. https://​doi.​org/​10.​1038/​nri.​2017.​9 View ArticlePubMed
  11. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363. https://​doi.​org/​10.​1038/​nri2545 View ArticlePubMedPubMed Central
  12. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61. https://​doi.​org/​10.​1038/​nm1523 View ArticlePubMed
  13. Panaretakis T, Kepp O, Brockmeier U et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28:578–590. https://​doi.​org/​10.​1038/​emboj.​2009.​1 View ArticlePubMedPubMed Central
  14. Garg AD, Krysko DV, Verfaillie T et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31:1062–1079. https://​doi.​org/​10.​1038/​emboj.​2011.​497 View ArticlePubMedPubMed Central
  15. Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G (2018) eIF2alpha phosphorylation: a hallmark of immunogenic cell death. Oncoimmunology 7:e1431089. https://​doi.​org/​10.​1080/​2162402X.​2018.​1431089 View ArticlePubMedPubMed Central
  16. Martins I, Wang Y, Michaud M et al (2014) Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 21:79–91. https://​doi.​org/​10.​1038/​cdd.​2013.​75 View ArticlePubMed
  17. Martins I, Tesniere A, Kepp O et al (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–3728. https://​doi.​org/​10.​4161/​cc.​8.​22.​10026 View ArticlePubMed
  18. Michaud M, Martins I, Sukkurwala AQ et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577. https://​doi.​org/​10.​1126/​science.​1208347 View ArticlePubMed
  19. Silginer M, Weller M, Stupp R, Roth P (2017) Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis 8:e2753. https://​doi.​org/​10.​1038/​cddis.​2017.​171 View ArticlePubMedPubMed Central
  20. Dupont N, Orhon I, Bauvy C, Codogno P (2014) Autophagy and autophagic flux in tumor cells. Methods Enzymol 543:73–88. https://​doi.​org/​10.​1016/​B978-0-12-801329-8.​00004-0 View ArticlePubMed
  21. Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5:915–919. https://​doi.​org/​10.​1158/​2159-8290.​CD-15-0563 View ArticlePubMedPubMed Central
  22. Kirson ED, Giladi M, Gurvich Z et al (2009) Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metastasis 26:633–640. https://​doi.​org/​10.​1007/​s10585-009-9262-y View ArticlePubMedPubMed Central
  23. Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F (2017) Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8(+) T cells. Cancer Immunol Res 5:832–838. https://​doi.​org/​10.​1158/​2326-6066.​CIR-17-0055 View ArticlePubMed
  24. Hu ZI, McArthur HL, Ho AY (2017) The abscopal effect of radiation therapy: What is it and how can we use it in breast cancer? Curr Breast Cancer Rep 9:45–51. https://​doi.​org/​10.​1007/​s12609-017-0234-y View ArticlePubMedPubMed Central
  25. Wong ET, Lok E, Swanson KD, Gautam S, Engelhard HH, Lieberman F, Taillibert S, Ram Z, Villano JL (2014) Response assessment of NovoTTF-100A versus best physician’s choice chemotherapy in recurrent glioblastoma. Cancer Med 3:592–602. https://​doi.​org/​10.​1002/​cam4.​210 View ArticlePubMedPubMed Central
  26. Wong ET, Lok E, Gautam S, Swanson KD (2015) Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer 113:232–241. https://​doi.​org/​10.​1038/​bjc.​2015.​238 View ArticlePubMedPubMed Central
  27. Senovilla L, Vitale I, Martins I et al (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337:1678–1684. https://​doi.​org/​10.​1126/​science.​1224922 View ArticlePubMed
  28. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G (2007) Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 14:1848–1850. https://​doi.​org/​10.​1038/​sj.​cdd.​4402201 View ArticlePubMed
  29. Stingele S, Stoehr G, Storchova Z (2013) Activation of autophagy in cells with abnormal karyotype. Autophagy 9:246–248. https://​doi.​org/​10.​4161/​auto.​22558 View ArticlePubMedPubMed Central
  30. Elliott MR, Chekeni FB, Trampont PC et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286. https://​doi.​org/​10.​1038/​nature08296 View ArticlePubMedPubMed Central
  31. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. https://​doi.​org/​10.​1038/​nature00858 View ArticlePubMed
  32. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32. https://​doi.​org/​10.​1016/​j.​immuni.​2008.​05.​013 View ArticlePubMedPubMed Central
  33. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ, Chiorazzi N (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307–313View ArticlePubMed
  34. Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(1109–19):e10. https://​doi.​org/​10.​1016/​j.​cell.​2017.​08.​027 View Article
  35. McNamara MJ, Hilgart-Martiszus I, Barragan Echenique DM, Linch SN, Kasiewicz MJ, Redmond WL (2016) Interferon-gamma production by peripheral lymphocytes predicts survival of tumor-bearing mice receiving dual PD-1/CTLA-4 blockade. Cancer Immunol Res 4:650–657. https://​doi.​org/​10.​1158/​2326-6066.​CIR-16-0022 View ArticlePubMed
  36. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B, Trinchieri G, Sher A (2012) NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36:1047–1059. https://​doi.​org/​10.​1016/​j.​immuni.​2012.​03.​026 View ArticlePubMedPubMed Central
  37. Capasso A, Lang J, Pitts TM et al (2019) Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J Immunother Cancer 7:37. https://​doi.​org/​10.​1186/​s40425-019-0518-z View ArticlePubMedPubMed Central
  38. Yu JW, Bhattacharya S, Yanamandra N et al (2018) Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE 13:e0206223. https://​doi.​org/​10.​1371/​journal.​pone.​0206223 View ArticlePubMedPubMed Central
  39. Lechner MG, Karimi SS, Barry-Holson K, Angell TE, Murphy KA, Church CH, Ohlfest JR, Hu P, Epstein AL (2013) Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother 36:477–489. https://​doi.​org/​10.​1097/​01.​cji.​0000436722.​46675.​4a View ArticlePubMedPubMed Central
  40. Sun L, Clavijo PE, Robbins Y et al (2019) Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight. https://​doi.​org/​10.​1172/​jci.​insight.​126853 View ArticlePubMedPubMed Central
  41. Arlauckas SP, Garris CS, Kohler RH et al (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. https://​doi.​org/​10.​1126/​scitranslmed.​aal3604 View ArticlePubMedPubMed Central
  42. Georgoudaki AM, Prokopec KE, Boura VF et al (2016) Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 15:2000–2011. https://​doi.​org/​10.​1016/​j.​celrep.​2016.​04.​084 View ArticlePubMed
  43. Roberts PC, Mottillo EP, Baxa AC, Heng HH, Doyon-Reale N, Gregoire L, Lancaster WD, Rabah R, Schmelz EM (2005) Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia 7:944–956View ArticlePubMedPubMed Central
Metadata
Title
Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy
Authors
Tali Voloshin
Noa Kaynan
Shiri Davidi
Yaara Porat
Anna Shteingauz
Rosa S. Schneiderman
Einav Zeevi
Mijal Munster
Roni Blat
Catherine Tempel Brami
Shay Cahal
Aviran Itzhaki
Moshe Giladi
Eilon D. Kirson
Uri Weinberg
Adrian Kinzel
Yoram Palti
Publication date
01-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 7/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02534-7

Other articles of this Issue 7/2020

Cancer Immunology, Immunotherapy 7/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine