Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2020

Open Access 01-06-2020 | Cytokines | Original Article

Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro

Authors: Shannon Burke, Amy Shergold, Matthew J. Elder, Justine Whitworth, Xing Cheng, Hong Jin, Robert W. Wilkinson, James Harper, Danielle K. Carroll

Published in: Cancer Immunology, Immunotherapy | Issue 6/2020

Login to get access

Abstract

Oncolytic virus (OV) therapy is an emerging approach with the potential to redefine treatment options across a range of cancer indications and in patients who remain resistant to existing standards of care, including immuno-oncology (IO) drugs. MEDI5395, a recombinant Newcastle disease virus (NDV), engineered to express granulocyte–macrophage colony-stimulating factor (GM-CSF), exhibits potent oncolytic activity. It was hypothesized that activation of immune cells by MEDI5395, coupled with its oncolytic activity, would enhance the priming of antitumor immunity. Using MEDI5395 and recombinant NDVs encoding fluorescent reporter genes, we demonstrated preferential virus uptake and non-productive infection in myeloid cells, including monocytes, macrophages, and dendritic cells (DCs). Infection resulted in immune-cell activation, with upregulation of cell surface activation markers (e.g., CD80, PD-L1, HLA-DR) and secretion of proinflammatory cytokines (IFN-α2a, IL-6, IL-8, TNF-α). Interestingly, in vitro M2-polarized macrophages were more permissive to virus infection than were M1-polarized macrophages. In a co-culture system, infected myeloid cells were effective virus vectors and mediated the transfer of infectious NDV particles to tumor cells, resulting in cell death. Furthermore, NDV-infected DCs stimulated greater proliferation of allogeneic T cells than uninfected DCs. Antigens released after NDV-induced tumor cell lysis were cross-presented by DCs and drove activation of tumor antigen-specific autologous T cells. MEDI5395 therefore exhibited potent immunostimulatory activity and an ability to enhance antigen-specific T-cell priming. This, coupled with its tumor-selective oncolytic capacity, underscores the promise of MEDI5395 as a multimodal therapeutic, with potential to both enhance current responding patient populations and elicit de novo responses in resistant patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoos A (2016) Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247PubMedCrossRef Hoos A (2016) Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247PubMedCrossRef
2.
go back to reference Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 33(25):2780–2788PubMedCrossRef Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 33(25):2780–2788PubMedCrossRef
3.
go back to reference Villalona-Calero MA, Lam E, Otterson GA, Zhao W, Timmons M, Subramaniam D et al (2016) Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Cancer 122(6):875–883PubMedCrossRef Villalona-Calero MA, Lam E, Otterson GA, Zhao W, Timmons M, Subramaniam D et al (2016) Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Cancer 122(6):875–883PubMedCrossRef
5.
go back to reference Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619–2626PubMedPubMedCentralCrossRef Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619–2626PubMedPubMedCentralCrossRef
6.
go back to reference Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218PubMedCrossRef Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218PubMedCrossRef
7.
go back to reference Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18(9):689–706PubMedCrossRef Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18(9):689–706PubMedCrossRef
8.
9.
go back to reference Cheng X, Wang W, Xu Q, Harper J, Carroll D, Galinski MS et al (2016) Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol 90(11):5343–5352PubMedPubMedCentralCrossRef Cheng X, Wang W, Xu Q, Harper J, Carroll D, Galinski MS et al (2016) Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol 90(11):5343–5352PubMedPubMedCentralCrossRef
10.
go back to reference Jensen S, Thomsen AR (2012) Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86(6):2900–2910PubMedPubMedCentralCrossRef Jensen S, Thomsen AR (2012) Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86(6):2900–2910PubMedPubMedCentralCrossRef
11.
go back to reference Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408PubMedCrossRef Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408PubMedCrossRef
12.
go back to reference Luheshi N, Davies G, Poon E, Wiggins K, McCourt M, Legg J (2014) Th1 cytokines are more effective than Th2 cytokines at licensing anti-tumour functions in CD40-activated human macrophages in vitro. Eur J Immunol 44(1):162–172PubMedCrossRef Luheshi N, Davies G, Poon E, Wiggins K, McCourt M, Legg J (2014) Th1 cytokines are more effective than Th2 cytokines at licensing anti-tumour functions in CD40-activated human macrophages in vitro. Eur J Immunol 44(1):162–172PubMedCrossRef
13.
14.
go back to reference Manz MG (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26(5):537–541PubMedCrossRef Manz MG (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26(5):537–541PubMedCrossRef
15.
go back to reference Takahashi GW, Andrews DF 3rd, Lilly MB, Singer JW, Alderson MR (1993) Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 on interleukin-8 production by human neutrophils and monocytes. Blood 81(2):357–364PubMed Takahashi GW, Andrews DF 3rd, Lilly MB, Singer JW, Alderson MR (1993) Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 on interleukin-8 production by human neutrophils and monocytes. Blood 81(2):357–364PubMed
16.
go back to reference Ilett E, Kottke T, Donnelly O, Thompson J, Willmon C, Diaz R et al (2014) Cytokine conditioning enhances systemic delivery and therapy of an oncolytic virus. Mol Ther 22(10):1851–1863PubMedPubMedCentralCrossRef Ilett E, Kottke T, Donnelly O, Thompson J, Willmon C, Diaz R et al (2014) Cytokine conditioning enhances systemic delivery and therapy of an oncolytic virus. Mol Ther 22(10):1851–1863PubMedPubMedCentralCrossRef
17.
go back to reference Kim Y, Clements DR, Sterea AM, Jang HW, Gujar SA, Lee PW (2015) Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses 7(12):6506–6525PubMedPubMedCentralCrossRef Kim Y, Clements DR, Sterea AM, Jang HW, Gujar SA, Lee PW (2015) Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses 7(12):6506–6525PubMedPubMedCentralCrossRef
18.
go back to reference Zeng J, Fournier P, Schirrmacher V (2002) Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 297(1):19–30PubMedCrossRef Zeng J, Fournier P, Schirrmacher V (2002) Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 297(1):19–30PubMedCrossRef
19.
go back to reference Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S et al (2009) Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol 83(16):8108–8121PubMedPubMedCentralCrossRef Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S et al (2009) Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol 83(16):8108–8121PubMedPubMedCentralCrossRef
20.
go back to reference Zorn U, Dallmann I, Grosse J, Kirchner H, Poliwoda H, Atzpodien J (1994) Induction of cytokines and cytotoxicity against tumor cells by Newcastle disease virus. Cancer Biother 9(3):225–235PubMedCrossRef Zorn U, Dallmann I, Grosse J, Kirchner H, Poliwoda H, Atzpodien J (1994) Induction of cytokines and cytotoxicity against tumor cells by Newcastle disease virus. Cancer Biother 9(3):225–235PubMedCrossRef
21.
go back to reference Schirrmacher V, Bai L, Umansky V, Yu L, Xing Y, Qian Z (2000) Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 16(2):363–373PubMed Schirrmacher V, Bai L, Umansky V, Yu L, Xing Y, Qian Z (2000) Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 16(2):363–373PubMed
22.
go back to reference Umansky V, Shatrov VA, Lehmann V, Schirrmacher V (1996) Induction of NO synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor-kappa B. Int Immunol 8(4):491–498PubMedCrossRef Umansky V, Shatrov VA, Lehmann V, Schirrmacher V (1996) Induction of NO synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor-kappa B. Int Immunol 8(4):491–498PubMedCrossRef
23.
go back to reference Hoss A, Zwarthoff EC, Zawatzky R (1989) Differential expression of interferon alpha and beta induced with Newcastle disease virus in mouse macrophage cultures. J Gen Virol 70(Pt 3):575–589PubMedCrossRef Hoss A, Zwarthoff EC, Zawatzky R (1989) Differential expression of interferon alpha and beta induced with Newcastle disease virus in mouse macrophage cultures. J Gen Virol 70(Pt 3):575–589PubMedCrossRef
24.
go back to reference Zawatzky R, Wurmbaeck H, Falk W, Homfeld A (1991) Endogenous interferon specifically regulates Newcastle disease virus-induced cytokine gene expression in mouse macrophages. J Virol 65(9):4839–4846PubMedPubMedCentralCrossRef Zawatzky R, Wurmbaeck H, Falk W, Homfeld A (1991) Endogenous interferon specifically regulates Newcastle disease virus-induced cytokine gene expression in mouse macrophages. J Virol 65(9):4839–4846PubMedPubMedCentralCrossRef
25.
go back to reference Kaufman HL, Ruby CE, Hughes T, Slingluff CL Jr (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11PubMedPubMedCentralCrossRef Kaufman HL, Ruby CE, Hughes T, Slingluff CL Jr (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11PubMedPubMedCentralCrossRef
26.
go back to reference van den Boorn JG, Hartmann G (2013) Turning tumors into vaccines: co-opting the innate immune system. Immunity 39(1):27–37PubMedCrossRef van den Boorn JG, Hartmann G (2013) Turning tumors into vaccines: co-opting the innate immune system. Immunity 39(1):27–37PubMedCrossRef
27.
go back to reference Li K, Qu S, Chen X, Wu Q, Shi M (2017) Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci 18(2):404–423PubMedCentralCrossRef Li K, Qu S, Chen X, Wu Q, Shi M (2017) Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci 18(2):404–423PubMedCentralCrossRef
28.
go back to reference Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O et al (2017) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–19e10PubMedCrossRef Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O et al (2017) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–19e10PubMedCrossRef
29.
go back to reference Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Investig 119(8):2399–2411PubMed Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Investig 119(8):2399–2411PubMed
30.
go back to reference Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640PubMedPubMedCentralCrossRef Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640PubMedPubMedCentralCrossRef
31.
go back to reference Schiavoni G, Mattei F, Gabriele L (2013) Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol 4:483PubMedPubMedCentralCrossRef Schiavoni G, Mattei F, Gabriele L (2013) Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol 4:483PubMedPubMedCentralCrossRef
32.
go back to reference Xu Q, Rangaswamy US, Wang W, Robbins SH, Harper J, Jin H et al (2019) Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo. Int J Cancer 146(2):531–541PubMedCrossRef Xu Q, Rangaswamy US, Wang W, Robbins SH, Harper J, Jin H et al (2019) Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo. Int J Cancer 146(2):531–541PubMedCrossRef
34.
go back to reference Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, Martinez DG, Engle X, Gewirtz AT et al (2009) In situ stimulation of CD40 and toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Can Res 69(18):7329–7337CrossRef Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, Martinez DG, Engle X, Gewirtz AT et al (2009) In situ stimulation of CD40 and toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Can Res 69(18):7329–7337CrossRef
35.
go back to reference Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N et al (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775PubMedCrossRef Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N et al (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775PubMedCrossRef
36.
go back to reference Hotte SJ, Lorence RM, Hirte HW, Polawski SR, Bamat MK, O'Neil JD et al (2007) An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res 13(3):977–985PubMedCrossRef Hotte SJ, Lorence RM, Hirte HW, Polawski SR, Bamat MK, O'Neil JD et al (2007) An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res 13(3):977–985PubMedCrossRef
37.
go back to reference Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E et al (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13(1):221–228PubMedCrossRef Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E et al (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13(1):221–228PubMedCrossRef
Metadata
Title
Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro
Authors
Shannon Burke
Amy Shergold
Matthew J. Elder
Justine Whitworth
Xing Cheng
Hong Jin
Robert W. Wilkinson
James Harper
Danielle K. Carroll
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Keyword
Cytokines
Published in
Cancer Immunology, Immunotherapy / Issue 6/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02495-x

Other articles of this Issue 6/2020

Cancer Immunology, Immunotherapy 6/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine