Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 4/2020

Open Access 01-04-2020 | Checkpoint Inhibitors | Original Article

Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma

Authors: Svenja Wagener-Ryczek, Max Schoemmel, Max Kraemer, Christiane Bruns, Wolfgang Schroeder, Thomas Zander, Florian Gebauer, Hakan Alakus, Sabine Merkelbach-Bruse, Reinhard Buettner, Heike Loeser, Martin Thelen, Hans A. Schlößer, Alexander Quaas

Published in: Cancer Immunology, Immunotherapy | Issue 4/2020

Login to get access

Abstract

The outcome in esophageal adenocarcinoma (EAC) is still poor with only 20% of patients in Western populations surviving for more than 5 years. Almost nothing is known about the precise composition of immune cells and their gene expression profiles in primary resected EACs and also nothing compared to neoadjuvant treated EACs. This study analyzes and compares immune profiles of primary resected and neoadjuvant treated esophageal adenocarcinoma and unravels possible targets for immunotherapy. We analyzed 47 EAC in total considering a set of 30 primary treatment-naive EACs and 17 neoadjuvant pretreated (12 × CROSS, 5 × FLOT) using the Nanostring's panel-based gene expression platform including 770 genes being important in malignant tumors and their immune micromileu. Most of the significantly altered genes are involved in the regulation of immune responses, T-and B cell functions as well as antigen processing. Chemokine-receptor axes like the CXCL9, -10,-11/CXCR3- are prominent in esophageal adenocarcinoma with a fold change of up to 9.5 promoting cancer cell proliferation and metastasis. ARG1, as a regulator of T-cell fate is sixfold down-regulated in untreated primary esophageal tumors. The influence of the currently used neoadjuvant treatment revealed a down-regulation of nearly all important checkpoint markers and inflammatory related genes in the local microenvironment. We found a higher expression of checkpoint markers like LAG3, TIM3, CTLA4 and CD276 in comparison to PD-L1/PD-1 supporting clinical trials analyzing the efficacy of a combination of different checkpoint inhibitors in EACs. We found an up-regulation of CD38 or LILRB1 as examples of additional immune escape mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Edgren G et al (2013) A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62(10):1406–1414CrossRef Edgren G et al (2013) A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62(10):1406–1414CrossRef
2.
go back to reference Lagergren J, Lagergren P (2013) Recent developments in esophageal adenocarcinoma. CA Cancer J Clin 63(4):232–248CrossRef Lagergren J, Lagergren P (2013) Recent developments in esophageal adenocarcinoma. CA Cancer J Clin 63(4):232–248CrossRef
3.
go back to reference Maret-Ouda J, El-Serag HB, Lagergren J (2016) Opportunities for preventing esophageal adenocarcinoma. Cancer Prev Res 9(11):828–834CrossRef Maret-Ouda J, El-Serag HB, Lagergren J (2016) Opportunities for preventing esophageal adenocarcinoma. Cancer Prev Res 9(11):828–834CrossRef
4.
go back to reference Gavin AT et al (2012) Oesophageal cancer survival in Europe: a EUROCARE-4 study. Cancer Epidemiol 36(6):505–512CrossRef Gavin AT et al (2012) Oesophageal cancer survival in Europe: a EUROCARE-4 study. Cancer Epidemiol 36(6):505–512CrossRef
5.
go back to reference Njei B, McCarty TR, Birk JW (2016) Trends in esophageal cancer survival in United States adults from 1973 to 2009: a SEER database analysis. J Gastroenterol Hepatol 31(6):1141–1146CrossRef Njei B, McCarty TR, Birk JW (2016) Trends in esophageal cancer survival in United States adults from 1973 to 2009: a SEER database analysis. J Gastroenterol Hepatol 31(6):1141–1146CrossRef
6.
go back to reference Kapoor H, Agrawal DK, Mittal SK (2015) Barrett's esophagus: recent insights into pathogenesis and cellular ontogeny. Transl Res 166(1):28–40CrossRef Kapoor H, Agrawal DK, Mittal SK (2015) Barrett's esophagus: recent insights into pathogenesis and cellular ontogeny. Transl Res 166(1):28–40CrossRef
7.
go back to reference Olson BM, McNeel DG (2012) Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Rev Vaccines 11(11):1315–1317CrossRef Olson BM, McNeel DG (2012) Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Rev Vaccines 11(11):1315–1317CrossRef
8.
go back to reference Dyck L, Mills KHG (2017) Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 47(5):765–779CrossRef Dyck L, Mills KHG (2017) Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 47(5):765–779CrossRef
9.
go back to reference Raufi AG, Klempner SJ (2015) Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol 6(5):561–569PubMedPubMedCentral Raufi AG, Klempner SJ (2015) Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol 6(5):561–569PubMedPubMedCentral
10.
go back to reference Ferris RL et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867CrossRef Ferris RL et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867CrossRef
11.
go back to reference Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639CrossRef Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639CrossRef
12.
go back to reference Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813CrossRef Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813CrossRef
13.
go back to reference Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34CrossRef Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34CrossRef
14.
go back to reference Bockorny B, Pectasides E (2016) The emerging role of immunotherapy in gastric and esophageal adenocarcinoma. Future Oncol 12(15):1833–1846CrossRef Bockorny B, Pectasides E (2016) The emerging role of immunotherapy in gastric and esophageal adenocarcinoma. Future Oncol 12(15):1833–1846CrossRef
15.
go back to reference Vrana D, Matzenauer M, Melichar B (2017) Current status of checkpoint inhibitors in the treatment of esophageal and gastric tumors - overview of studies. Klin Onkol 31(1):35–39PubMed Vrana D, Matzenauer M, Melichar B (2017) Current status of checkpoint inhibitors in the treatment of esophageal and gastric tumors - overview of studies. Klin Onkol 31(1):35–39PubMed
16.
go back to reference Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772–15787CrossRef Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772–15787CrossRef
17.
go back to reference Ayers M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940CrossRef Ayers M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940CrossRef
18.
go back to reference Holscher AH et al (2007) Laparoscopic ischemic conditioning of the stomach for esophageal replacement. Ann Surg 245(2):241–246CrossRef Holscher AH et al (2007) Laparoscopic ischemic conditioning of the stomach for esophageal replacement. Ann Surg 245(2):241–246CrossRef
19.
go back to reference Danaher P et al (2018) Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from the cancer genome atlas (TCGA). J ImmunoTherapy Cancer 6(1):63CrossRef Danaher P et al (2018) Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from the cancer genome atlas (TCGA). J ImmunoTherapy Cancer 6(1):63CrossRef
20.
go back to reference Merck, Merck’s KEYTRUDA® (pembrolizumab) significantly improved overall survival (OS) compared to chemotherapy in patients with advanced esophageal or esophagogastric junction carcinoma whose tumors express PD-L1 (CPS ≥10). 2018. Merck, Merck’s KEYTRUDA® (pembrolizumab) significantly improved overall survival (OS) compared to chemotherapy in patients with advanced esophageal or esophagogastric junction carcinoma whose tumors express PD-L1 (CPS ≥10). 2018.
21.
go back to reference Hewitt LC et al (2018) Epstein–Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: a large multi-centre study. Eur J Cancer 94:104–114CrossRef Hewitt LC et al (2018) Epstein–Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: a large multi-centre study. Eur J Cancer 94:104–114CrossRef
22.
go back to reference Cancer Genome Atlas Research N et al. (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636), 169–175. Cancer Genome Atlas Research N et al. (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636), 169–175.
23.
go back to reference Roelands J et al (2017) Immunogenomic classification of colorectal cancer and therapeutic implications. Int J Mol Sci 18(10) Roelands J et al (2017) Immunogenomic classification of colorectal cancer and therapeutic implications. Int J Mol Sci 18(10)
24.
go back to reference Tang H, Qiao J, Fu Y-X (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370(1):85–90CrossRef Tang H, Qiao J, Fu Y-X (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370(1):85–90CrossRef
25.
go back to reference van Meir H et al (2016) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6(2):e1267095–e1267095CrossRef van Meir H et al (2016) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6(2):e1267095–e1267095CrossRef
26.
go back to reference Jarosch A et al (2018) Neoadjuvant radiochemotherapy decreases the total amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer. Oncoimmunology 7(2):e1393133CrossRef Jarosch A et al (2018) Neoadjuvant radiochemotherapy decreases the total amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer. Oncoimmunology 7(2):e1393133CrossRef
27.
go back to reference Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ 362 Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ 362
28.
29.
go back to reference Lin C-F et al (2017) Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci 24(1):10CrossRef Lin C-F et al (2017) Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci 24(1):10CrossRef
30.
go back to reference Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21(4):687–692CrossRef Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21(4):687–692CrossRef
31.
go back to reference Rodriguez JA (2017) HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation. Oncol Lett 14(4):4415–4427CrossRef Rodriguez JA (2017) HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation. Oncol Lett 14(4):4415–4427CrossRef
32.
go back to reference Campoli M, Chang CC, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 19(20):A40–A45CrossRef Campoli M, Chang CC, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 19(20):A40–A45CrossRef
33.
go back to reference Barkal AA et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84CrossRef Barkal AA et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84CrossRef
34.
go back to reference Gajewski TF et al (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25(2):268–276CrossRef Gajewski TF et al (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25(2):268–276CrossRef
35.
go back to reference Chen L et al (2018) CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov 8(9):1156–1175CrossRef Chen L et al (2018) CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov 8(9):1156–1175CrossRef
36.
go back to reference Chen L et al (2018) Targeting CD38 to improve anti-PD-1/CTLA-4 combination therapy in lung cancer. J Clin Oncol 36(5):144–144CrossRef Chen L et al (2018) Targeting CD38 to improve anti-PD-1/CTLA-4 combination therapy in lung cancer. J Clin Oncol 36(5):144–144CrossRef
37.
go back to reference Brown JS, Sundar R, Lopez J (2018) Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer 118(3):312–324CrossRef Brown JS, Sundar R, Lopez J (2018) Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer 118(3):312–324CrossRef
38.
go back to reference O'Donnell T et al (2018) Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer. BMC Cancer 18(1):017–3825CrossRef O'Donnell T et al (2018) Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer. BMC Cancer 18(1):017–3825CrossRef
39.
go back to reference He Y et al (2018) TIM-3, a promising target for cancer immunotherapy. OncoTargets Therapy 11:7005–7009CrossRef He Y et al (2018) TIM-3, a promising target for cancer immunotherapy. OncoTargets Therapy 11:7005–7009CrossRef
40.
go back to reference Long L et al (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9(5–6):176–189PubMedPubMedCentral Long L et al (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9(5–6):176–189PubMedPubMedCentral
41.
go back to reference Marcq E et al (2017) Abundant expression of TIM-3, LAG-3, PD-1 and PD-L1 as immunotherapy checkpoint targets in effusions of mesothelioma patients. Oncotarget 8(52):89722–89735CrossRef Marcq E et al (2017) Abundant expression of TIM-3, LAG-3, PD-1 and PD-L1 as immunotherapy checkpoint targets in effusions of mesothelioma patients. Oncotarget 8(52):89722–89735CrossRef
42.
go back to reference Manna A et al (2018) Using anti-CD38 immunotherapy to enhance anti-tumor T-cell immunity in chronic lymphocytic leukemia (CLL). J Immunol 200(1):58 Manna A et al (2018) Using anti-CD38 immunotherapy to enhance anti-tumor T-cell immunity in chronic lymphocytic leukemia (CLL). J Immunol 200(1):58
Metadata
Title
Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma
Authors
Svenja Wagener-Ryczek
Max Schoemmel
Max Kraemer
Christiane Bruns
Wolfgang Schroeder
Thomas Zander
Florian Gebauer
Hakan Alakus
Sabine Merkelbach-Bruse
Reinhard Buettner
Heike Loeser
Martin Thelen
Hans A. Schlößer
Alexander Quaas
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 4/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-019-02475-w

Other articles of this Issue 4/2020

Cancer Immunology, Immunotherapy 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine