Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 4/2018

01-04-2018 | Original Article

Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras

Authors: Isabelle Dierckx de Casterlé, Sabine Fevery, Omer Rutgeerts, Fariba Poosti, Sofie Struyf, Caroline Lenaerts, Mark Waer, An D. Billiau, Ben Sprangers

Published in: Cancer Immunology, Immunotherapy | Issue 4/2018

Login to get access

Abstract

Allogeneic hematopoietic stem cell transplantation is an emerging treatment option for solid tumors because of its capacity to elicit immune graft-versus-tumor effects. However, these are often limited and associated with GvHD. Adoptive recipient leukocyte infusion (RLI) was shown to enhance anti-tumor responses of allogeneic bone marrow transplantation in murine neuroblastoma (Neuro2A)-bearing chimeras. In contrast to the clinically used donor leukocyte infusion, the RLI anti-tumor effect—elicited by host-versus-graft lymphohematopoietic reactivity—does not cause GvHD; however, the tumor growth-inhibitory effect is incomplete, because overall survival is not prolonged. Here, we studied the anti-solid tumor mechanisms of RLI with the objective to improve its efficacy. Host-versus-graft reactivity following RLI was associated with a systemic cytokine storm, lymph node DC activation, and systemic expansion of host-derived IFN-γ-expressing CD4+ T cells and IFN-γ-and granzyme B-expressing CD8+ T cells, which acquired killing activity against Neuro2A and third-party tumor cells. The tumor showed up-regulation of MHC class I and a transient accumulation of IFN-γ-and granzyme B-expressing CD8+ T cells: the intra-tumor decline in cytotoxic CD8+ T cells coincided with a systemic—and to a lesser extent intra-tumoral—expansion of MDSC. In vivo MDSC depletion with 5-FU significantly improved the local tumor growth-inhibitory effect of RLI as well as overall survival. In conclusion, the RLI-induced alloreactivity gives rise to a host-derived cytotoxic T-cell anti-neuroblastoma response, but also drives an expansion of host-type MDSC that counteracts the anti-tumor effect. This finding identifies MDSC as a novel target to increase the effectiveness of RLI, and possibly other cancer immunotherapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zahid MF, Ali N, Shaikh MU, Adil SN (2014) Outcome of allogeneic hematopoietic stem cell transplantation in patients with hematological malignancies. Int J Hematol Oncol Stem Cell Res 8:30–38PubMedPubMedCentral Zahid MF, Ali N, Shaikh MU, Adil SN (2014) Outcome of allogeneic hematopoietic stem cell transplantation in patients with hematological malignancies. Int J Hematol Oncol Stem Cell Res 8:30–38PubMedPubMedCentral
2.
go back to reference Demirer T, Barkholt L, Blaise D, Pedrazzoli P, Aglietta M, Carella AM et al (2008) Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat Clin Pract Oncol 5:256–267CrossRefPubMed Demirer T, Barkholt L, Blaise D, Pedrazzoli P, Aglietta M, Carella AM et al (2008) Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat Clin Pract Oncol 5:256–267CrossRefPubMed
3.
go back to reference Kanold J, Paillard C, Tchirkov A, Merlin E, Marabelle A, Lutz P et al (2008) Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant 42(Suppl 2):S25–S30CrossRefPubMed Kanold J, Paillard C, Tchirkov A, Merlin E, Marabelle A, Lutz P et al (2008) Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant 42(Suppl 2):S25–S30CrossRefPubMed
4.
go back to reference Hale GA, Arora M, Ahn KW, He W, Camitta B, Bishop MR et al (2013) Allogeneic hematopoietic cell transplantation for neuroblastoma: the CIBMTR experience. Bone Marrow Transplant 48:1056–1064CrossRefPubMedPubMedCentral Hale GA, Arora M, Ahn KW, He W, Camitta B, Bishop MR et al (2013) Allogeneic hematopoietic cell transplantation for neuroblastoma: the CIBMTR experience. Bone Marrow Transplant 48:1056–1064CrossRefPubMedPubMedCentral
5.
go back to reference Ho VT, Soiffer RJ (2001) The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 98:3192–3204CrossRefPubMed Ho VT, Soiffer RJ (2001) The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 98:3192–3204CrossRefPubMed
7.
go back to reference Dey BR, McAfee S, Colby C, Cieply K, Caron M, Saidman S et al (2005) Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 128:351–359CrossRefPubMed Dey BR, McAfee S, Colby C, Cieply K, Caron M, Saidman S et al (2005) Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 128:351–359CrossRefPubMed
8.
go back to reference Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M (2005) Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 175:665–676CrossRefPubMed Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M (2005) Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 175:665–676CrossRefPubMed
9.
go back to reference Rubio MT, Zhao G, Buchli J, Chittenden M, Sykes M (2006) Role of indirect allo- and autoreactivity in anti-tumor responses induced by recipient leukocyte infusions (RLI) in mixed chimeras prepared with nonmyeloablative conditioning. Clin Immunol 120:33–44CrossRefPubMed Rubio MT, Zhao G, Buchli J, Chittenden M, Sykes M (2006) Role of indirect allo- and autoreactivity in anti-tumor responses induced by recipient leukocyte infusions (RLI) in mixed chimeras prepared with nonmyeloablative conditioning. Clin Immunol 120:33–44CrossRefPubMed
10.
go back to reference Saito TI, Li HW, Sykes M (2010) Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. J Immunol 185:2099–2105CrossRefPubMedPubMedCentral Saito TI, Li HW, Sykes M (2010) Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. J Immunol 185:2099–2105CrossRefPubMedPubMedCentral
11.
go back to reference De Somer L, Sprangers B, Fevery S, Rutgeerts O, Lenaerts C, Boon L et al (2011) Recipient lymphocyte infusion in MHC-matched bone marrow chimeras induces a limited lymphohematopoietic host-versus-graft reactivity but a significant antileukemic effect mediated by CD8+ T cells and natural killer cells. Haematologica 96:424–431CrossRefPubMed De Somer L, Sprangers B, Fevery S, Rutgeerts O, Lenaerts C, Boon L et al (2011) Recipient lymphocyte infusion in MHC-matched bone marrow chimeras induces a limited lymphohematopoietic host-versus-graft reactivity but a significant antileukemic effect mediated by CD8+ T cells and natural killer cells. Haematologica 96:424–431CrossRefPubMed
12.
go back to reference Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A et al (2013) Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 62:1733–1744CrossRefPubMed Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A et al (2013) Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 62:1733–1744CrossRefPubMed
13.
go back to reference Morgenstern DA, Baruchel S, Irwin MS (2013) Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 35:337–347CrossRefPubMed Morgenstern DA, Baruchel S, Irwin MS (2013) Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 35:337–347CrossRefPubMed
14.
go back to reference Bartholomew J, Washington T, Bergeron S, Nielson D, Saggio J, Quirk L (2016) Dinutuximab: a novel immunotherapy in the treatment of pediatric patients with high-risk neuroblastoma. J Pediatr Oncol Nurs 34:5–12CrossRef Bartholomew J, Washington T, Bergeron S, Nielson D, Saggio J, Quirk L (2016) Dinutuximab: a novel immunotherapy in the treatment of pediatric patients with high-risk neuroblastoma. J Pediatr Oncol Nurs 34:5–12CrossRef
15.
go back to reference Siapati KE, Barker S, Kinnon C, Michalski A, Anderson R, Brickell P et al (2003) Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. Br J Cancer 88:1641–1648CrossRefPubMedPubMedCentral Siapati KE, Barker S, Kinnon C, Michalski A, Anderson R, Brickell P et al (2003) Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. Br J Cancer 88:1641–1648CrossRefPubMedPubMedCentral
16.
go back to reference Sefrioui H, Billiau AD, Waer M (2000) Graft-versus-leukemia effect in minor antigen mismatched chimeras given delayed donor leucocyte infusion: immunoregulatory aspects and role of donor T and ASGM1-positive cells. Transplantation 70:348–353CrossRefPubMed Sefrioui H, Billiau AD, Waer M (2000) Graft-versus-leukemia effect in minor antigen mismatched chimeras given delayed donor leucocyte infusion: immunoregulatory aspects and role of donor T and ASGM1-positive cells. Transplantation 70:348–353CrossRefPubMed
17.
go back to reference De Somer L, Fevery S, Bullens DM, Rutgeerts O, Lenaerts C, Mathieu C et al (2010) Murine bone marrow chimeras developing autoimmunity after CTLA-4-blockade show an expansion of T regulatory cells with an activated cytokine profile. Immunol Lett 133:49–53CrossRefPubMed De Somer L, Fevery S, Bullens DM, Rutgeerts O, Lenaerts C, Mathieu C et al (2010) Murine bone marrow chimeras developing autoimmunity after CTLA-4-blockade show an expansion of T regulatory cells with an activated cytokine profile. Immunol Lett 133:49–53CrossRefPubMed
18.
go back to reference Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2003) Transient expansion of Mac1 + Ly6-G + Ly6-C + early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102:740–748CrossRefPubMed Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2003) Transient expansion of Mac1 + Ly6-G + Ly6-C + early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102:740–748CrossRefPubMed
19.
go back to reference Sprangers B, Van Wijmeersch B, Luyckx A, Sagaert X, Verbinnen B, Rutgeerts O et al (2011) Subclinical GvHD in non-irradiated F1 hybrids: severe lymphoid-tissue GvHD causing prolonged immune dysfunction. Bone Marrow Transplant 46:586–596CrossRefPubMed Sprangers B, Van Wijmeersch B, Luyckx A, Sagaert X, Verbinnen B, Rutgeerts O et al (2011) Subclinical GvHD in non-irradiated F1 hybrids: severe lymphoid-tissue GvHD causing prolonged immune dysfunction. Bone Marrow Transplant 46:586–596CrossRefPubMed
20.
go back to reference Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Koks C, Fevery S et al (2012) Subset characterization of myeloid-derived suppressor cells arising during induction of BM chimerism in mice. Bone Marrow Transplant 47:985–992CrossRefPubMed Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Koks C, Fevery S et al (2012) Subset characterization of myeloid-derived suppressor cells arising during induction of BM chimerism in mice. Bone Marrow Transplant 47:985–992CrossRefPubMed
21.
go back to reference Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4:36CrossRef Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4:36CrossRef
23.
go back to reference Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting In enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061CrossRefPubMed Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting In enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061CrossRefPubMed
24.
go back to reference Saito TI, Rubio MT, Sykes M (2006) Clinical relevance of recipient leukocyte infusion as antitumor therapy following nonmyeloablative allogeneic hematopoietic cell transplantation. Exp Hematol 34:1271–1277CrossRefPubMed Saito TI, Rubio MT, Sykes M (2006) Clinical relevance of recipient leukocyte infusion as antitumor therapy following nonmyeloablative allogeneic hematopoietic cell transplantation. Exp Hematol 34:1271–1277CrossRefPubMed
25.
go back to reference Prigione I, Corrias MV, Airoldi I, Raffaghello L, Morandi F, Bocca P et al (2004) Immunogenicity of human neuroblastoma. Ann NY Acad Sci 1028:69–80CrossRefPubMed Prigione I, Corrias MV, Airoldi I, Raffaghello L, Morandi F, Bocca P et al (2004) Immunogenicity of human neuroblastoma. Ann NY Acad Sci 1028:69–80CrossRefPubMed
26.
go back to reference Alshaker HA, Matalka KZ (2011) IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 11:33CrossRefPubMedPubMedCentral Alshaker HA, Matalka KZ (2011) IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 11:33CrossRefPubMedPubMedCentral
27.
go back to reference Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139CrossRefPubMed Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139CrossRefPubMed
28.
go back to reference Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338CrossRefPubMed Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338CrossRefPubMed
29.
go back to reference Melero I, Rouzaut A, Motz GT, Coukos G (2014) T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4:522–526CrossRefPubMedPubMedCentral Melero I, Rouzaut A, Motz GT, Coukos G (2014) T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4:522–526CrossRefPubMedPubMedCentral
30.
go back to reference Santilli G, Piotrowska I, Cantilena S, Chayka O, D’Alicarnasso M, Morgenstern DA et al (2013) Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res 19:1116–1125CrossRefPubMed Santilli G, Piotrowska I, Cantilena S, Chayka O, D’Alicarnasso M, Morgenstern DA et al (2013) Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res 19:1116–1125CrossRefPubMed
31.
go back to reference Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S et al (2013) Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 19:692–702CrossRefPubMedPubMedCentral Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S et al (2013) Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 19:692–702CrossRefPubMedPubMedCentral
32.
go back to reference Yin J, Wang C, Huang M, Mao X, Zhou J, Zhang Y (2016) Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells in leukemia patients with allogeneic hematopoietic stem cell transplantation: novel clinical potential strategies for the prevention and cellular therapy of graft-versus-host disease. Cancer Med 5:1654–1669CrossRefPubMedPubMedCentral Yin J, Wang C, Huang M, Mao X, Zhou J, Zhang Y (2016) Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells in leukemia patients with allogeneic hematopoietic stem cell transplantation: novel clinical potential strategies for the prevention and cellular therapy of graft-versus-host disease. Cancer Med 5:1654–1669CrossRefPubMedPubMedCentral
33.
go back to reference Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026CrossRefPubMedPubMedCentral Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026CrossRefPubMedPubMedCentral
34.
go back to reference Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695CrossRefPubMed Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695CrossRefPubMed
35.
go back to reference Bronte V (2009) Myeloid-derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol 39:2670–2672CrossRefPubMed Bronte V (2009) Myeloid-derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol 39:2670–2672CrossRefPubMed
37.
go back to reference Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962CrossRefPubMedPubMedCentral Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962CrossRefPubMedPubMedCentral
38.
go back to reference Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376CrossRefPubMedPubMedCentral Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376CrossRefPubMedPubMedCentral
39.
go back to reference Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biol 37:1387–1406CrossRef Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biol 37:1387–1406CrossRef
40.
go back to reference Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983CrossRefPubMed Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983CrossRefPubMed
41.
42.
go back to reference Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220CrossRefPubMedPubMedCentral Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220CrossRefPubMedPubMedCentral
43.
go back to reference Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO et al (2014) How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol 5:174CrossRefPubMedPubMedCentral Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO et al (2014) How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol 5:174CrossRefPubMedPubMedCentral
44.
go back to reference Homma S, Komita H, Sagawa Y, Ohno T, Toda G (2005) Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 115:451–461CrossRefPubMedPubMedCentral Homma S, Komita H, Sagawa Y, Ohno T, Toda G (2005) Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 115:451–461CrossRefPubMedPubMedCentral
45.
go back to reference Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T et al (2013) Tumor-specific CD4 + T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells. Cancer Immunol Immunother 62:257–271CrossRefPubMed Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T et al (2013) Tumor-specific CD4 + T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells. Cancer Immunol Immunother 62:257–271CrossRefPubMed
46.
go back to reference Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30:125–140CrossRefPubMed Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30:125–140CrossRefPubMed
47.
49.
go back to reference Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210:1389–1402CrossRefPubMedPubMedCentral Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210:1389–1402CrossRefPubMedPubMedCentral
50.
go back to reference Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI (2009) Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+ Gr-1+ myeloid cells. J Immunol 183:117–128CrossRefPubMedPubMedCentral Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI (2009) Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+ Gr-1+ myeloid cells. J Immunol 183:117–128CrossRefPubMedPubMedCentral
51.
go back to reference Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633CrossRefPubMedPubMedCentral Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633CrossRefPubMedPubMedCentral
52.
go back to reference Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307CrossRefPubMedPubMedCentral Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307CrossRefPubMedPubMedCentral
53.
go back to reference Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S et al (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 4:869–880CrossRefPubMedPubMedCentral Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S et al (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 4:869–880CrossRefPubMedPubMedCentral
Metadata
Title
Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras
Authors
Isabelle Dierckx de Casterlé
Sabine Fevery
Omer Rutgeerts
Fariba Poosti
Sofie Struyf
Caroline Lenaerts
Mark Waer
An D. Billiau
Ben Sprangers
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 4/2018
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-017-2114-8

Other articles of this Issue 4/2018

Cancer Immunology, Immunotherapy 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine