Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 12/2014

01-12-2014 | Review

Bioinformatics for cancer immunotherapy target discovery

Authors: Lars Rønn Olsen, Benito Campos, Mike Stein Barnkob, Ole Winther, Vladimir Brusic, Mads Hald Andersen

Published in: Cancer Immunology, Immunotherapy | Issue 12/2014

Login to get access

Abstract

The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors.
Literature
2.
go back to reference Rees R, Laversin S, Murray C, Ball G (2012) Current approaches to identify and evaluate cancer biomarkers for patient stratification. In: Morrow WJW, Sheikh NA, Schmidt CS, Davies DH (eds) Vaccinology: principles and Practice. Wiley, Oxford, pp 452–463 Rees R, Laversin S, Murray C, Ball G (2012) Current approaches to identify and evaluate cancer biomarkers for patient stratification. In: Morrow WJW, Sheikh NA, Schmidt CS, Davies DH (eds) Vaccinology: principles and Practice. Wiley, Oxford, pp 452–463
5.
go back to reference Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi:10.1038/nm1093 PubMed Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi:10.​1038/​nm1093 PubMed
8.
go back to reference Bronte V, Serafini P, De Santo C et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278PubMed Bronte V, Serafini P, De Santo C et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278PubMed
9.
go back to reference Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52PubMed Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52PubMed
10.
go back to reference Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54. doi:10.1038/nm976 PubMed Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54. doi:10.​1038/​nm976 PubMed
11.
go back to reference Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268. doi:10.1038/85330 PubMed Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268. doi:10.​1038/​85330 PubMed
12.
go back to reference Falk K, Rötzschke O, Stevanović S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296. doi:10.1038/351290a0 PubMed Falk K, Rötzschke O, Stevanović S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296. doi:10.​1038/​351290a0 PubMed
13.
go back to reference Reinherz EL, Tan K, Tang L et al (1999) The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–1921PubMed Reinherz EL, Tan K, Tang L et al (1999) The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–1921PubMed
14.
go back to reference Rock KL, Gramm C, Rothstein L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMed Rock KL, Gramm C, Rothstein L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMed
15.
go back to reference Androlewicz MJ, Anderson KS, Cresswell P (1993) Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci USA 90:9130–9134PubMedCentralPubMed Androlewicz MJ, Anderson KS, Cresswell P (1993) Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci USA 90:9130–9134PubMedCentralPubMed
16.
go back to reference Henney CS, Gaffney J, Bloom BR (1974) On the relation of products of activated lymphocytes to cell-mediated cytolysis. J Exp Med 140:837–852PubMedCentralPubMed Henney CS, Gaffney J, Bloom BR (1974) On the relation of products of activated lymphocytes to cell-mediated cytolysis. J Exp Med 140:837–852PubMedCentralPubMed
17.
18.
go back to reference Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729PubMed Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729PubMed
19.
go back to reference Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693PubMed Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693PubMed
20.
go back to reference Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337. doi:10.1158/1078-0432.CCR-09-0737 PubMed Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337. doi:10.​1158/​1078-0432.​CCR-09-0737 PubMed
23.
go back to reference Lurquin C, Van Pel A, Mariamé B et al (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303PubMed Lurquin C, Van Pel A, Mariamé B et al (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303PubMed
26.
go back to reference Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450PubMed Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450PubMed
27.
go back to reference Harndahl M, Rasmussen M, Roder G et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416. doi:10.1002/eji.201141774 PubMed Harndahl M, Rasmussen M, Roder G et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416. doi:10.​1002/​eji.​201141774 PubMed
29.
30.
31.
go back to reference Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192. doi:10.1093/jnci/djj329 PubMed Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192. doi:10.​1093/​jnci/​djj329 PubMed
35.
go back to reference Campoli M, Chang C-C, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 20(Suppl 4):A40–A45PubMed Campoli M, Chang C-C, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 20(Suppl 4):A40–A45PubMed
36.
go back to reference Chang C-C, Campoli M, Restifo NP et al (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174:1462–1471PubMedCentralPubMed Chang C-C, Campoli M, Restifo NP et al (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174:1462–1471PubMedCentralPubMed
37.
go back to reference Sioud M, Hansen M, Dybwad A (2000) Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int J Mol Med 6:123–128PubMed Sioud M, Hansen M, Dybwad A (2000) Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int J Mol Med 6:123–128PubMed
39.
go back to reference Loging WT, Lal A, Siu IM et al (2000) Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 10:1393–1402PubMedCentralPubMed Loging WT, Lal A, Siu IM et al (2000) Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 10:1393–1402PubMedCentralPubMed
40.
go back to reference Scanlan MJ, Gordon CM, Williamson B et al (2002) Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 98:485–492PubMed Scanlan MJ, Gordon CM, Williamson B et al (2002) Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 98:485–492PubMed
45.
go back to reference Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.2202/1544-6115.1027 Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.​2202/​1544-6115.​1027
47.
go back to reference Chatterjee M, Draghici S, Tainsky MA (2006) Immunotheranostics: breaking tolerance in immunotherapy using tumor autoantigens identified on protein microarrays. Curr Opin Drug Discov Dev 9:380–385 Chatterjee M, Draghici S, Tainsky MA (2006) Immunotheranostics: breaking tolerance in immunotherapy using tumor autoantigens identified on protein microarrays. Curr Opin Drug Discov Dev 9:380–385
48.
go back to reference Miller JC, Zhou H, Kwekel J et al (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63. doi:10.1002/pmic.200390009 PubMed Miller JC, Zhou H, Kwekel J et al (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63. doi:10.​1002/​pmic.​200390009 PubMed
51.
go back to reference Imielinski M, Cha S, Rejtar T et al (2012) Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma reveals molecular features of tumorigenesis and clinical relapse. Mol Cell Proteomics 11(M111):014910. doi:10.1074/mcp.M111.014910 PubMed Imielinski M, Cha S, Rejtar T et al (2012) Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma reveals molecular features of tumorigenesis and clinical relapse. Mol Cell Proteomics 11(M111):014910. doi:10.​1074/​mcp.​M111.​014910 PubMed
54.
go back to reference Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371. doi:10.1038/ng1201-365 PubMed Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371. doi:10.​1038/​ng1201-365 PubMed
55.
go back to reference Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180PubMedCentralPubMed Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180PubMedCentralPubMed
57.
go back to reference Bagger FO, Rapin N, Theilgaard-Mönch K et al (2012) HemaExplorer: a Web server for easy and fast visualization of gene expression in normal and malignant hematopoiesis. Blood 119:6394–6395. doi:10.1182/blood-2012-05-427310 PubMed Bagger FO, Rapin N, Theilgaard-Mönch K et al (2012) HemaExplorer: a Web server for easy and fast visualization of gene expression in normal and malignant hematopoiesis. Blood 119:6394–6395. doi:10.​1182/​blood-2012-05-427310 PubMed
58.
61.
go back to reference Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15PubMedCentralPubMed Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15PubMedCentralPubMed
63.
go back to reference Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMed Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMed
64.
go back to reference Allred DC, Clark GM, Molina R et al (1992) Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 23:974–979PubMed Allred DC, Clark GM, Molina R et al (1992) Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 23:974–979PubMed
65.
go back to reference Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117PubMed Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117PubMed
66.
go back to reference Carter P, Presta L, Gorman CM et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289PubMedCentralPubMed Carter P, Presta L, Gorman CM et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289PubMedCentralPubMed
76.
go back to reference Keşmir C, Nussbaum AK, Schild H et al (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15:287–296PubMed Keşmir C, Nussbaum AK, Schild H et al (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15:287–296PubMed
77.
go back to reference Peters B, Bulik S, Tampe R et al (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171:1741–1749PubMed Peters B, Bulik S, Tampe R et al (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171:1741–1749PubMed
80.
go back to reference Saxová P, Buus S, Brunak S, Keşmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15:781–787PubMed Saxová P, Buus S, Brunak S, Keşmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15:781–787PubMed
83.
go back to reference Lin HH, Zhang GL, Tongchusak S et al (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinform 9(Suppl 12):S22. doi:10.1186/1471-2105-9-S12-S22 Lin HH, Zhang GL, Tongchusak S et al (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinform 9(Suppl 12):S22. doi:10.​1186/​1471-2105-9-S12-S22
84.
go back to reference Lundegaard C, Lund O, Nielsen M (2008) Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24:1397–1398. doi:10.1093/bioinformatics/btn128 PubMed Lundegaard C, Lund O, Nielsen M (2008) Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24:1397–1398. doi:10.​1093/​bioinformatics/​btn128 PubMed
85.
go back to reference Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform 10:296. doi:10.1186/1471-2105-10-296 Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform 10:296. doi:10.​1186/​1471-2105-10-296
86.
go back to reference Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175PubMed Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175PubMed
87.
go back to reference Schuler MM, Nastke M-D, Stevanovikć S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93PubMed Schuler MM, Nastke M-D, Stevanovikć S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93PubMed
91.
go back to reference Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform 8:424. doi:10.1186/1471-2105-8-424 Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform 8:424. doi:10.​1186/​1471-2105-8-424
94.
go back to reference Tung C-W, Ziehm M, Kämper A et al (2011) POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinform 12:446. doi:10.1186/1471-2105-12-446 Tung C-W, Ziehm M, Kämper A et al (2011) POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinform 12:446. doi:10.​1186/​1471-2105-12-446
95.
go back to reference Saethang T, Hirose O, Kimkong I et al (2013) PAAQD: predicting immunogenicity of MHC class I binding peptides using amino acid pairwise contact potentials and quantum topological molecular similarity descriptors. J Immunol Methods 387:293–302. doi:10.1016/j.jim.2012.09.016 PubMed Saethang T, Hirose O, Kimkong I et al (2013) PAAQD: predicting immunogenicity of MHC class I binding peptides using amino acid pairwise contact potentials and quantum topological molecular similarity descriptors. J Immunol Methods 387:293–302. doi:10.​1016/​j.​jim.​2012.​09.​016 PubMed
97.
go back to reference Rongcun Y, Salazar-Onfray F, Charo J et al (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037–1044PubMed Rongcun Y, Salazar-Onfray F, Charo J et al (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037–1044PubMed
98.
go back to reference Reinhold B, Keskin DB, Reinherz EL (2010) Molecular detection of targeted major histocompatibility complex I-bound peptides using a probabilistic measure and nanospray MS(3) on a hybrid quadrupole-linear ion trap. Anal Chem 82:9090–9099. doi:10.1021/ac102387t PubMedCentralPubMed Reinhold B, Keskin DB, Reinherz EL (2010) Molecular detection of targeted major histocompatibility complex I-bound peptides using a probabilistic measure and nanospray MS(3) on a hybrid quadrupole-linear ion trap. Anal Chem 82:9090–9099. doi:10.​1021/​ac102387t PubMedCentralPubMed
99.
go back to reference Andersen RS, Kvistborg P, Frøsig TM et al (2012) Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat Protoc 7:891–902. doi:10.1038/nprot.2012.037 PubMed Andersen RS, Kvistborg P, Frøsig TM et al (2012) Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat Protoc 7:891–902. doi:10.​1038/​nprot.​2012.​037 PubMed
101.
go back to reference Sette A, Sidney J (1998) HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482PubMed Sette A, Sidney J (1998) HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482PubMed
102.
go back to reference Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212PubMed Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212PubMed
105.
107.
go back to reference Hildesheim A, Apple RJ, Chen C-J et al (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94:1780–1789PubMed Hildesheim A, Apple RJ, Chen C-J et al (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94:1780–1789PubMed
109.
110.
go back to reference Zhang GL, Keskin DB, Reinherz EL, Brusic V (2011) A cDNA microarray for rapid and economical identification of HLA profiles of individuals. In: IEEE international conference on bioinformatics and biomedical work, pp 677–679 Zhang GL, Keskin DB, Reinherz EL, Brusic V (2011) A cDNA microarray for rapid and economical identification of HLA profiles of individuals. In: IEEE international conference on bioinformatics and biomedical work, pp 677–679
113.
116.
go back to reference Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512. doi:10.1093/nar/gkn202 PubMedCentralPubMed Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512. doi:10.​1093/​nar/​gkn202 PubMedCentralPubMed
120.
go back to reference Bui H-H, Sidney J, Li W et al (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform 8:361. doi:10.1186/1471-2105-8-361 Bui H-H, Sidney J, Li W et al (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform 8:361. doi:10.​1186/​1471-2105-8-361
122.
go back to reference Kawashima I, Hudson SJ, Tsai V et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14PubMed Kawashima I, Hudson SJ, Tsai V et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14PubMed
126.
go back to reference Andersen MH, Becker JC, Thor Straten P (2005) Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4:399–409. doi:10.1038/nrd1717 PubMed Andersen MH, Becker JC, Thor Straten P (2005) Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4:399–409. doi:10.​1038/​nrd1717 PubMed
129.
go back to reference Ranieri E, Kierstead LS, Zarour H et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Investig 29:121–125 Ranieri E, Kierstead LS, Zarour H et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Investig 29:121–125
130.
go back to reference Henderson RA, Finn OJ (1996) Human tumor antigens are ready to fly. Adv Immunol 62:217–256PubMed Henderson RA, Finn OJ (1996) Human tumor antigens are ready to fly. Adv Immunol 62:217–256PubMed
143.
go back to reference Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653PubMed Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653PubMed
147.
Metadata
Title
Bioinformatics for cancer immunotherapy target discovery
Authors
Lars Rønn Olsen
Benito Campos
Mike Stein Barnkob
Ole Winther
Vladimir Brusic
Mads Hald Andersen
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 12/2014
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1627-7

Other articles of this Issue 12/2014

Cancer Immunology, Immunotherapy 12/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine