Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 3/2013

01-03-2013 | Original article

Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI

Authors: Gabrielle M. Siegers, Emeline J. Ribot, Armand Keating, Paula J. Foster

Published in: Cancer Immunology, Immunotherapy | Issue 3/2013

Login to get access

Abstract

Gamma delta T cells (GDTc) comprise a small subset of cytolytic T cells shown to kill malignant cells in vitro and in vivo. We have developed a novel protocol to expand GDTc from human blood whereby GDTc were initially expanded in the presence of alpha beta T cells (ABTc) that were then depleted prior to use. We achieved clinically relevant expansions of up to 18,485-fold total GDTc, with 18,849-fold expansion of the Vδ1 GDTc subset over 21 days. ABTc depletion yielded 88.1 ± 4.2 % GDTc purity, and GDTc continued to expand after separation. Immunophenotyping revealed that expanded GDTc were mostly CD27-CD45RA- and CD27-CD45RA+ effector memory cells. GDTc cytotoxicity against PC-3M prostate cancer, U87 glioblastoma and EM-2 leukemia cells was confirmed. Both expanded Vδ1 and Vδ2 GDTc were cytotoxic to PC-3M in a T cell antigen receptor- and CD18-dependent manner. We are the first to label GDTc with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles for cellular MRI. Using protamine sulfate and magnetofection, we achieved up to 40 % labeling with clinically approved Feraheme (Ferumoxytol), as determined by enumeration of Perls’ Prussian blue-stained cytospins. Electron microscopy at 2,800× magnification verified the presence of internalized clusters of iron oxide; however, high iron uptake correlated negatively with cell viability. We found improved USPIO uptake later in culture. MRI of GDTc in agarose phantoms was performed at 3 Tesla. The signal-to-noise ratios for unlabeled and labeled cells were 56 and 21, respectively. Thus, Feraheme-labeled GDTc could be readily detected in vitro via MRI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026PubMedCrossRef Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026PubMedCrossRef
2.
go back to reference Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8PubMedCrossRef Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8PubMedCrossRef
3.
go back to reference Lamb LS Jr, Lopez RD (2005) gammadelta T cells: a new frontier for immunotherapy? Biol Blood Marrow Transplant 11:161–168PubMedCrossRef Lamb LS Jr, Lopez RD (2005) gammadelta T cells: a new frontier for immunotherapy? Biol Blood Marrow Transplant 11:161–168PubMedCrossRef
4.
go back to reference Ensslin AS, Formby B (1991) Comparison of cytolytic and proliferative activities of human gamma delta and alpha beta T cells from peripheral blood against various human tumor cell lines. J Natl Cancer Inst 83:1564–1569PubMedCrossRef Ensslin AS, Formby B (1991) Comparison of cytolytic and proliferative activities of human gamma delta and alpha beta T cells from peripheral blood against various human tumor cell lines. J Natl Cancer Inst 83:1564–1569PubMedCrossRef
5.
go back to reference Zheng BJ, Chan KW, Im S, Chua D, Sham JS et al (2001) Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model. Int J Cancer 92:421–425PubMedCrossRef Zheng BJ, Chan KW, Im S, Chua D, Sham JS et al (2001) Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model. Int J Cancer 92:421–425PubMedCrossRef
6.
go back to reference Viey E, Lucas C, Romagne F, Escudier B, Chouaib S et al (2008) Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 31:313–323PubMedCrossRef Viey E, Lucas C, Romagne F, Escudier B, Chouaib S et al (2008) Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 31:313–323PubMedCrossRef
7.
go back to reference Knight A, Mackinnon S, Lowdell MW (2012) Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 14:1110–1118 Knight A, Mackinnon S, Lowdell MW (2012) Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 14:1110–1118
8.
go back to reference Wright A, Lee JE, Link MP, Smith SD, Carroll W et al (1989) Cytotoxic T lymphocytes specific for self tumor immunoglobulin express T cell receptor delta chain. J Exp Med 169:1557–1564PubMedCrossRef Wright A, Lee JE, Link MP, Smith SD, Carroll W et al (1989) Cytotoxic T lymphocytes specific for self tumor immunoglobulin express T cell receptor delta chain. J Exp Med 169:1557–1564PubMedCrossRef
9.
go back to reference Freedman MS, D’Souza S, Antel JP (1997) gamma delta T-cell-human glial cell interactions. I. In vitro induction of gammadelta T-cell expansion by human glial cells. J Neuroimmunol 74:135–142PubMedCrossRef Freedman MS, D’Souza S, Antel JP (1997) gamma delta T-cell-human glial cell interactions. I. In vitro induction of gammadelta T-cell expansion by human glial cells. J Neuroimmunol 74:135–142PubMedCrossRef
10.
go back to reference Vollenweider I, Vrbka E, Fierz W, Groscurth P (1993) Heterogeneous binding and killing behaviour of human gamma/delta-TCR+ lymphokine-activated killer cells against K562 and Daudi cells. Cancer Immunol Immunother 36:331–336PubMedCrossRef Vollenweider I, Vrbka E, Fierz W, Groscurth P (1993) Heterogeneous binding and killing behaviour of human gamma/delta-TCR+ lymphokine-activated killer cells against K562 and Daudi cells. Cancer Immunol Immunother 36:331–336PubMedCrossRef
11.
go back to reference Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP et al (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392PubMed Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP et al (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392PubMed
12.
go back to reference Siegers GM, Dhamko H, Wang XH, Mathieson AM, Kosaka Y et al (2011) Human Vdelta1 gammadelta T cells expanded from peripheral blood exhibit specific cytotoxicity against B-cell chronic lymphocytic leukemia-derived cells. Cytotherapy 13:753–764 Siegers GM, Dhamko H, Wang XH, Mathieson AM, Kosaka Y et al (2011) Human Vdelta1 gammadelta T cells expanded from peripheral blood exhibit specific cytotoxicity against B-cell chronic lymphocytic leukemia-derived cells. Cytotherapy 13:753–764
13.
go back to reference Siegers GM, Felizardo TC, Mathieson AM, Kosaka Y, Wang XH et al (2011) Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model. PLoS ONE 6:e16700PubMedCrossRef Siegers GM, Felizardo TC, Mathieson AM, Kosaka Y, Wang XH et al (2011) Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model. PLoS ONE 6:e16700PubMedCrossRef
14.
go back to reference Gioia C, Agrati C, Casetti R, Cairo C, Borsellino G et al (2002) Lack of CD27-CD45RA-V gamma 9V delta 2+ T cell effectors in immunocompromised hosts and during active pulmonary tuberculosis. J Immunol 168:1484–1489 Gioia C, Agrati C, Casetti R, Cairo C, Borsellino G et al (2002) Lack of CD27-CD45RA-V gamma 9V delta 2+ T cell effectors in immunocompromised hosts and during active pulmonary tuberculosis. J Immunol 168:1484–1489
15.
go back to reference Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198:391–397PubMedCrossRef Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198:391–397PubMedCrossRef
16.
go back to reference Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173:1552–1556PubMedCrossRef Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173:1552–1556PubMedCrossRef
17.
go back to reference Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S et al (2007) Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457PubMedCrossRef Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S et al (2007) Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457PubMedCrossRef
18.
go back to reference Yamaguchi T, Fujimiya Y, Suzuki Y, Katakura R, Ebina T (1997) A simple method for the propagation and purification of gamma delta T cells from the peripheral blood of glioblastoma patients using solid-phase anti-CD3 antibody and soluble IL-2. J Immunol Methods 205:19–28PubMedCrossRef Yamaguchi T, Fujimiya Y, Suzuki Y, Katakura R, Ebina T (1997) A simple method for the propagation and purification of gamma delta T cells from the peripheral blood of glioblastoma patients using solid-phase anti-CD3 antibody and soluble IL-2. J Immunol Methods 205:19–28PubMedCrossRef
19.
go back to reference Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J et al (1998) Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood gammadeltaT cells isolated from glioblastoma patients. Cancer Immunol Immunother 47:97–103PubMedCrossRef Yamaguchi T, Suzuki Y, Katakura R, Ebina T, Yokoyama J et al (1998) Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood gammadeltaT cells isolated from glioblastoma patients. Cancer Immunol Immunother 47:97–103PubMedCrossRef
20.
go back to reference Fujimiya Y, Suzuki Y, Katakura R, Miyagi T, Yamaguchi T et al (1997) In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(-) gammadelta T cells from glioblastoma patients. Clin Cancer Res 3:633–643PubMed Fujimiya Y, Suzuki Y, Katakura R, Miyagi T, Yamaguchi T et al (1997) In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(-) gammadelta T cells from glioblastoma patients. Clin Cancer Res 3:633–643PubMed
21.
go back to reference Lamb LS Jr (2009) Gammadelta T cells as immune effectors against high-grade gliomas. Immunol Res 45:85–95PubMedCrossRef Lamb LS Jr (2009) Gammadelta T cells as immune effectors against high-grade gliomas. Immunol Res 45:85–95PubMedCrossRef
22.
go back to reference Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476PubMedCrossRef Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476PubMedCrossRef
23.
go back to reference Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30:575–579PubMed Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30:575–579PubMed
24.
go back to reference Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T et al (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37:1191–1197PubMedCrossRef Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T et al (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37:1191–1197PubMedCrossRef
25.
go back to reference Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I et al (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609PubMedCrossRef Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I et al (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609PubMedCrossRef
26.
go back to reference Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K et al (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786PubMedCrossRef Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K et al (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786PubMedCrossRef
27.
go back to reference Mallett CL, McFadden C, Chen Y, Foster PJ (2012) Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 14:743–751 Mallett CL, McFadden C, Chen Y, Foster PJ (2012) Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 14:743–751
28.
go back to reference de Chickera S, Willert C, Mallet C, Foley R, Foster P et al (2012) Cellular MRI as a suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent immunological outcomes. Int Immunol 24:29–41PubMedCrossRef de Chickera S, Willert C, Mallet C, Foley R, Foster P et al (2012) Cellular MRI as a suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent immunological outcomes. Int Immunol 24:29–41PubMedCrossRef
29.
go back to reference Zhang X, de Chickera SN, Willert C, Economopoulos V, Noad J et al (2011) Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model. Cytotherapy 13:1234–1248PubMedCrossRef Zhang X, de Chickera SN, Willert C, Economopoulos V, Noad J et al (2011) Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model. Cytotherapy 13:1234–1248PubMedCrossRef
30.
go back to reference Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Chen Y et al (2010) The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Chen Y et al (2010) The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol
31.
go back to reference Jirak D, Kriz J, Strzelecki M, Yang J, Hasilo C et al (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA 22:257–265PubMedCrossRef Jirak D, Kriz J, Strzelecki M, Yang J, Hasilo C et al (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA 22:257–265PubMedCrossRef
32.
go back to reference Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29PubMedCrossRef Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29PubMedCrossRef
33.
go back to reference Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26:144–151PubMedCrossRef Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26:144–151PubMedCrossRef
34.
go back to reference Bernas LM, Foster PJ, Rutt BK (2010) Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T. Magn Reson Med 64:23–31PubMedCrossRef Bernas LM, Foster PJ, Rutt BK (2010) Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T. Magn Reson Med 64:23–31PubMedCrossRef
35.
go back to reference Foster PJ, Dunn EA, Karl KE, Snir JA, Nycz CM et al (2008) Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice. Neoplasia 10:207–216PubMed Foster PJ, Dunn EA, Karl KE, Snir JA, Nycz CM et al (2008) Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice. Neoplasia 10:207–216PubMed
36.
go back to reference Perera M, Ribot EJ, Percy DB, McFadden C, Simedrea C et al (2012) In vivo magnetic resonance imaging for investigating the development and distribution of experimental brain metastases due to breast cancer. Trans Oncol 5:217–225 Perera M, Ribot EJ, Percy DB, McFadden C, Simedrea C et al (2012) In vivo magnetic resonance imaging for investigating the development and distribution of experimental brain metastases due to breast cancer. Trans Oncol 5:217–225
37.
go back to reference Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010PubMedCrossRef Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010PubMedCrossRef
38.
go back to reference Ribot EJ, Foster PJ (2012) In vivo MRI discrimination between live and lysed iron-labeled cells using balanced steady state free precession. Eur Radiol (in press) Ribot EJ, Foster PJ (2012) In vivo MRI discrimination between live and lysed iron-labeled cells using balanced steady state free precession. Eur Radiol (in press)
39.
go back to reference Garden OA, Reynolds PR, Yates J, Larkman DJ, Marelli-Berg FM et al (2006) A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314:123–133PubMedCrossRef Garden OA, Reynolds PR, Yates J, Larkman DJ, Marelli-Berg FM et al (2006) A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314:123–133PubMedCrossRef
40.
go back to reference Beer AJ, Holzapfel K, Neudorfer J, Piontek G, Settles M et al (2008) Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles. Eur Radiol 18:1087–1095PubMedCrossRef Beer AJ, Holzapfel K, Neudorfer J, Piontek G, Settles M et al (2008) Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles. Eur Radiol 18:1087–1095PubMedCrossRef
41.
go back to reference Iida H, Takayanagi K, Nakanishi T, Kume A, Muramatsu K et al (2008) Preparation of human immune effector T cells containing iron-oxide nanoparticles. Biotechnol Bioeng 101:1123–1128PubMedCrossRef Iida H, Takayanagi K, Nakanishi T, Kume A, Muramatsu K et al (2008) Preparation of human immune effector T cells containing iron-oxide nanoparticles. Biotechnol Bioeng 101:1123–1128PubMedCrossRef
42.
go back to reference Janic B, Rad AM, Jordan EK, Iskander AS, Ali MM et al (2009) Optimization and validation of FePro cell labeling method. PLoS ONE 4:e5873PubMedCrossRef Janic B, Rad AM, Jordan EK, Iskander AS, Ali MM et al (2009) Optimization and validation of FePro cell labeling method. PLoS ONE 4:e5873PubMedCrossRef
43.
go back to reference Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S et al (2010) Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS ONE 5:e9365PubMedCrossRef Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S et al (2010) Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS ONE 5:e9365PubMedCrossRef
44.
go back to reference Lewin M, Carlesso N, Tung CH, Tang XW, Cory D et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef Lewin M, Carlesso N, Tung CH, Tang XW, Cory D et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef
45.
go back to reference Liu L, Ye Q, Wu Y, Hsieh WY, Chen CL et al (2012) Tracking T-cells in vivo with a new nano-sized MRI contrast agent. Nanomedicine [Epub ahead of print] Liu L, Ye Q, Wu Y, Hsieh WY, Chen CL et al (2012) Tracking T-cells in vivo with a new nano-sized MRI contrast agent. Nanomedicine [Epub ahead of print]
46.
go back to reference Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8:1131–1135PubMed Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A (2001) Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8:1131–1135PubMed
47.
go back to reference Mallett CL, Foster PJ (2011) Optimization of the balanced steady state free precession (bSSFP) pulse sequence for magnetic resonance imaging of the mouse prostate at 3T. PLoS ONE 6:e18361PubMedCrossRef Mallett CL, Foster PJ (2011) Optimization of the balanced steady state free precession (bSSFP) pulse sequence for magnetic resonance imaging of the mouse prostate at 3T. PLoS ONE 6:e18361PubMedCrossRef
48.
go back to reference Lamb LS Jr, Musk P, Ye Z, van Rhee F, Geier SS et al (2001) Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 27:601–606PubMedCrossRef Lamb LS Jr, Musk P, Ye Z, van Rhee F, Geier SS et al (2001) Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 27:601–606PubMedCrossRef
49.
go back to reference Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H et al (2005) Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 201:1567–1578PubMedCrossRef Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H et al (2005) Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 201:1567–1578PubMedCrossRef
50.
go back to reference Schilbach K, Frommer K, Meier S, Handgretinger R, Eyrich M (2008) Immune response of human propagated gammadelta-T-cells to neuroblastoma recommend the Vdelta1+ subset for gammadelta-T-cell-based immunotherapy. J Immunother 31:896–905PubMedCrossRef Schilbach K, Frommer K, Meier S, Handgretinger R, Eyrich M (2008) Immune response of human propagated gammadelta-T-cells to neuroblastoma recommend the Vdelta1+ subset for gammadelta-T-cell-based immunotherapy. J Immunother 31:896–905PubMedCrossRef
51.
go back to reference Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O et al (2012) Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 119:1418–1427PubMedCrossRef Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O et al (2012) Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 119:1418–1427PubMedCrossRef
52.
go back to reference Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P et al (2010) The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116:2164–2172PubMedCrossRef Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P et al (2010) The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116:2164–2172PubMedCrossRef
53.
go back to reference Dokouhaki P, Han M, Joe B, Li M, Johnston MR et al (2010) Adoptive immunotherapy of cancer using ex vivo expanded human gammadelta T cells: a new approach. Cancer Lett 297:126–136PubMedCrossRef Dokouhaki P, Han M, Joe B, Li M, Johnston MR et al (2010) Adoptive immunotherapy of cancer using ex vivo expanded human gammadelta T cells: a new approach. Cancer Lett 297:126–136PubMedCrossRef
54.
go back to reference Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D et al (2011) Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118:992–1001PubMedCrossRef Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D et al (2011) Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118:992–1001PubMedCrossRef
55.
go back to reference Poggi A, Zocchi MR, Carosio R, Ferrero E, Angelini DF et al (2002) Transendothelial migratory pathways of V delta 1+ TCR gamma delta+ and V delta 2+ TCR gamma delta+ T lymphocytes from healthy donors and multiple sclerosis patients: involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J Immunol 168:6071–6077PubMed Poggi A, Zocchi MR, Carosio R, Ferrero E, Angelini DF et al (2002) Transendothelial migratory pathways of V delta 1+ TCR gamma delta+ and V delta 2+ TCR gamma delta+ T lymphocytes from healthy donors and multiple sclerosis patients: involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J Immunol 168:6071–6077PubMed
56.
go back to reference Janssen O, Wesselborg S, Heckl-Ostreicher B, Pechhold K, Bender A et al (1991) T cell receptor/CD3-signaling induces death by apoptosis in human T cell receptor gamma delta+ T cells. J Immunol 146:35–39PubMed Janssen O, Wesselborg S, Heckl-Ostreicher B, Pechhold K, Bender A et al (1991) T cell receptor/CD3-signaling induces death by apoptosis in human T cell receptor gamma delta+ T cells. J Immunol 146:35–39PubMed
57.
go back to reference Lopez RD, Xu S, Guo B, Negrin RS, Waller EK (2000) CD2-mediated IL-12-dependent signals render human gamma delta-T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood 96:3827–3837PubMed Lopez RD, Xu S, Guo B, Negrin RS, Waller EK (2000) CD2-mediated IL-12-dependent signals render human gamma delta-T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood 96:3827–3837PubMed
58.
go back to reference Viey E, Laplace C, Escudier B (2005) Peripheral gammadelta T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 5:973–986PubMedCrossRef Viey E, Laplace C, Escudier B (2005) Peripheral gammadelta T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 5:973–986PubMedCrossRef
59.
go back to reference Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K et al (2008) Zoledronate facilitates large-scale ex vivo expansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 10:842–856PubMedCrossRef Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K et al (2008) Zoledronate facilitates large-scale ex vivo expansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 10:842–856PubMedCrossRef
60.
go back to reference Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F et al (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206PubMedCrossRef Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F et al (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206PubMedCrossRef
61.
go back to reference Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998PubMedCrossRef Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998PubMedCrossRef
62.
go back to reference Caccamo N, Meraviglia S, Ferlazzo V, Angelini D, Borsellino G et al (2005) Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol 35:1764–1772PubMedCrossRef Caccamo N, Meraviglia S, Ferlazzo V, Angelini D, Borsellino G et al (2005) Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol 35:1764–1772PubMedCrossRef
63.
go back to reference Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884PubMedCrossRef Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884PubMedCrossRef
64.
go back to reference Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K et al (2012) Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett 210:53–63PubMedCrossRef Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K et al (2012) Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett 210:53–63PubMedCrossRef
65.
go back to reference Brekelmans P, van Soest P, Voerman J, Platenburg PP, Leenen PJ et al (1994) Transferrin receptor expression as a marker of immature cycling thymocytes in the mouse. Cell Immunol 159:331–339PubMedCrossRef Brekelmans P, van Soest P, Voerman J, Platenburg PP, Leenen PJ et al (1994) Transferrin receptor expression as a marker of immature cycling thymocytes in the mouse. Cell Immunol 159:331–339PubMedCrossRef
66.
go back to reference Keating A, Bernstein ID, Papayannopoulou T, Raskind W, Singer JW (1983) EM-2 and EM-3: two new Ph’+ myeloid cell lines. In: PA GDM (ed) Symposia on molecular and cellular biology, new series; UCLA. Alan R. Liss, New York, pp 513–520 Keating A, Bernstein ID, Papayannopoulou T, Raskind W, Singer JW (1983) EM-2 and EM-3: two new Ph’+ myeloid cell lines. In: PA GDM (ed) Symposia on molecular and cellular biology, new series; UCLA. Alan R. Liss, New York, pp 513–520
Metadata
Title
Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI
Authors
Gabrielle M. Siegers
Emeline J. Ribot
Armand Keating
Paula J. Foster
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 3/2013
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1353-y

Other articles of this Issue 3/2013

Cancer Immunology, Immunotherapy 3/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine