Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 11/2010

01-11-2010 | Original Article

Leukemic cell products down-regulate human dendritic cell differentiation

Authors: Juliana Maria Motta, Clarissa Rodrigues Nascimento, Vivian Mary Rumjanek

Published in: Cancer Immunology, Immunotherapy | Issue 11/2010

Login to get access

Abstract

The microenvironment produced by solid tumors is inhibitory to the immune system, inducing dendritic cell (DC) alterations, but there is a paucity of information regarding haematological malignances. The aim of this study was to investigate DC differentiation under the influence of leukemic cell products. Monocytes from healthy volunteers were cultured in the presence of IL-4 and GM-CSF for the generation of immature DCs. Supernatants from leukemic cultures were added to monocyte cultures during differentiation. The lineages used were K562, a chronic myeloid leukemia, HL-60, a promyelocytic leukemia and DAUDI, originated from Burkitt lymphoma. It was observed that the expression of CD14 remained high and the CD1a was low in the presence of tumor supernatants, while non-malignant supernatants did not affect these parameters. Furthermore, IL-1β and TNF-α production by monocytes during differentiation was increased by the presence of tumor supernatants. The modifications on CD14 and CD1a expressions could be mimicked by the addition of exogenous IL-1β and partially inhibited by the neutralization of IL-1β. These results suggest that soluble products from leukemic cells interfere with DC differentiation and, in the present work, this effect could be mediated by monocyte-derived IL-1β in response to tumor supernatants.
Literature
1.
go back to reference Biemer JJ (1990) Malignant lymphomas associated with immunodeficiency states. Ann Clin Lab Sci 20:175–191PubMed Biemer JJ (1990) Malignant lymphomas associated with immunodeficiency states. Ann Clin Lab Sci 20:175–191PubMed
2.
3.
go back to reference Shunyakov L, Ryan CK, Sahasrabudhe DM, Khorana AA (2004) The influence of host response on colorectal cancer prognosis. Clin Colorectal Cancer 4:38–45CrossRefPubMed Shunyakov L, Ryan CK, Sahasrabudhe DM, Khorana AA (2004) The influence of host response on colorectal cancer prognosis. Clin Colorectal Cancer 4:38–45CrossRefPubMed
4.
go back to reference Costello RT, Gastaut JA, Olive D (1999) Mechanisms of tumor escape from immunologic response. Rev Med Interne 20:579–588CrossRefPubMed Costello RT, Gastaut JA, Olive D (1999) Mechanisms of tumor escape from immunologic response. Rev Med Interne 20:579–588CrossRefPubMed
5.
go back to reference Algarra I, García-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910CrossRefPubMed Algarra I, García-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910CrossRefPubMed
6.
go back to reference Shurin M, Gabrilovich D (2001) Regulation of the dendritic cell system by tumor. Cancer Res Ther Control 11:65–78 Shurin M, Gabrilovich D (2001) Regulation of the dendritic cell system by tumor. Cancer Res Ther Control 11:65–78
7.
go back to reference Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274CrossRefPubMed Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274CrossRefPubMed
8.
go back to reference Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290PubMed Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290PubMed
9.
go back to reference Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514CrossRefPubMed Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514CrossRefPubMed
10.
go back to reference Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369CrossRefPubMed Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369CrossRefPubMed
11.
go back to reference Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML (1998) Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804–2809PubMed Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML (1998) Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804–2809PubMed
12.
13.
go back to reference Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93CrossRefPubMed Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93CrossRefPubMed
14.
go back to reference Peters JH, Gieseler R, Thiele B, Steinbach F (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol Today 17:273–278CrossRefPubMed Peters JH, Gieseler R, Thiele B, Steinbach F (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol Today 17:273–278CrossRefPubMed
15.
go back to reference Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, Niederwieser D, Schuler G (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137–151CrossRefPubMed Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, Niederwieser D, Schuler G (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137–151CrossRefPubMed
16.
go back to reference Aalamian M, Tourkova IL, Chatta GS, Lilja H, Huland E, Huland H, Shurin GV, Shurin MR (2003) Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 170:2026–2030CrossRefPubMed Aalamian M, Tourkova IL, Chatta GS, Lilja H, Huland E, Huland H, Shurin GV, Shurin MR (2003) Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 170:2026–2030CrossRefPubMed
17.
go back to reference Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369PubMed Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369PubMed
18.
go back to reference Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791PubMed Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791PubMed
19.
go back to reference Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67:5479–5488CrossRefPubMed Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67:5479–5488CrossRefPubMed
20.
go back to reference Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183CrossRefPubMed Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183CrossRefPubMed
21.
go back to reference Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25:387–408CrossRefPubMed Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25:387–408CrossRefPubMed
22.
go back to reference Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592CrossRefPubMed Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592CrossRefPubMed
23.
go back to reference Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52CrossRefPubMed Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52CrossRefPubMed
24.
go back to reference Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118CrossRefPubMed Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118CrossRefPubMed
25.
go back to reference Sombroek CC, Stam AG, Masterson AJ, Lougheed SM, Schakel MJ, Meijer CJ, Pinedo HM, van den Eertwegh AJ, Scheper RJ, de Gruijl TD (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168:4333–4343PubMed Sombroek CC, Stam AG, Masterson AJ, Lougheed SM, Schakel MJ, Meijer CJ, Pinedo HM, van den Eertwegh AJ, Scheper RJ, de Gruijl TD (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168:4333–4343PubMed
26.
go back to reference Kiertscher SM, Luo J, Dubinett SM, Roth MD (2000) Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276PubMed Kiertscher SM, Luo J, Dubinett SM, Roth MD (2000) Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276PubMed
27.
go back to reference Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV (2002) Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68CrossRefPubMed Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV (2002) Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68CrossRefPubMed
28.
go back to reference Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334PubMed Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334PubMed
29.
go back to reference Gallagher R, Collins S, Trujillo J, Mccredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F, Gallo R (1979) Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54:713–733PubMed Gallagher R, Collins S, Trujillo J, Mccredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F, Gallo R (1979) Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54:713–733PubMed
30.
go back to reference Adams A, Strander H, Cantell K (1975) Sensitivity of the Epstein–Barr virus transformed human lymphoid cell lines to interferon. J Gen Virol 28:207–217CrossRefPubMed Adams A, Strander H, Cantell K (1975) Sensitivity of the Epstein–Barr virus transformed human lymphoid cell lines to interferon. J Gen Virol 28:207–217CrossRefPubMed
31.
go back to reference Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD (2005) Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 174:3015–3023PubMed Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD (2005) Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 174:3015–3023PubMed
32.
go back to reference Hillenbrand EE, Neville AM, Coventry BJ (1999) Immunohistochemical localization of CD1a-positive putative dendritic cells in human breast tumours. Br J Cancer 79:940–944CrossRefPubMed Hillenbrand EE, Neville AM, Coventry BJ (1999) Immunohistochemical localization of CD1a-positive putative dendritic cells in human breast tumours. Br J Cancer 79:940–944CrossRefPubMed
33.
go back to reference Joo HG, Fleming TP, Tanaka Y, Dunn TJ, Linehan DC, Goedegebuure PS, Eberlein TJ (2002) Human dendritic cells induce tumor-specific apoptosis by soluble factors. Int J Cancer 102:20–28CrossRefPubMed Joo HG, Fleming TP, Tanaka Y, Dunn TJ, Linehan DC, Goedegebuure PS, Eberlein TJ (2002) Human dendritic cells induce tumor-specific apoptosis by soluble factors. Int J Cancer 102:20–28CrossRefPubMed
34.
go back to reference Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103CrossRefPubMed Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103CrossRefPubMed
Metadata
Title
Leukemic cell products down-regulate human dendritic cell differentiation
Authors
Juliana Maria Motta
Clarissa Rodrigues Nascimento
Vivian Mary Rumjanek
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 11/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-010-0890-5

Other articles of this Issue 11/2010

Cancer Immunology, Immunotherapy 11/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine