Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2010

01-05-2010 | Original Article

Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine

Authors: Irina Daurkin, Evgeniy Eruslanov, Johannes Vieweg, Sergei Kusmartsev

Published in: Cancer Immunology, Immunotherapy | Issue 5/2010

Login to get access

Abstract

Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45+ tumor-infiltrated cells. The majority of “post-AZA” surviving CD45+ tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE2), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2′-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy.
Literature
2.
go back to reference Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217CrossRefPubMed Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217CrossRefPubMed
3.
go back to reference Murdoch C, Muthana M, Coffelt SB (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631CrossRefPubMed Murdoch C, Muthana M, Coffelt SB (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631CrossRefPubMed
4.
go back to reference Yang L, DeBusk L, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421CrossRefPubMed Yang L, DeBusk L, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421CrossRefPubMed
5.
go back to reference Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189CrossRefPubMed Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189CrossRefPubMed
6.
go back to reference Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205CrossRefPubMed Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205CrossRefPubMed
7.
go back to reference Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827CrossRefPubMed Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827CrossRefPubMed
8.
go back to reference Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2007) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastases. Nat Cell Biol 8(12):1369–1375CrossRef Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2007) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastases. Nat Cell Biol 8(12):1369–1375CrossRef
9.
go back to reference Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167(10):5583–5593PubMed Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167(10):5583–5593PubMed
10.
go back to reference Rodriguez PC, Quiceno DG, Zabaleta J et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849CrossRefPubMed Rodriguez PC, Quiceno DG, Zabaleta J et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849CrossRefPubMed
11.
go back to reference Kusmartsev S, Gabrilovich D (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891PubMed Kusmartsev S, Gabrilovich D (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891PubMed
12.
go back to reference Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51CrossRefPubMed Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51CrossRefPubMed
13.
go back to reference Eruslanov E, Kaliberov S, Daurkin I et al (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182(12):7548–7557CrossRefPubMed Eruslanov E, Kaliberov S, Daurkin I et al (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182(12):7548–7557CrossRefPubMed
14.
go back to reference Zhang B, Bowerman NB, Salama JK et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55CrossRefPubMed Zhang B, Bowerman NB, Salama JK et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55CrossRefPubMed
15.
go back to reference Talmadge J, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400CrossRefPubMed Talmadge J, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400CrossRefPubMed
16.
go back to reference Kusmartsev S, Gabrilovich D (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245CrossRefPubMed Kusmartsev S, Gabrilovich D (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245CrossRefPubMed
17.
go back to reference Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166CrossRefPubMed Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166CrossRefPubMed
18.
go back to reference Nefedova Y, Huang M, Kusmartsev S et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474PubMed Nefedova Y, Huang M, Kusmartsev S et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474PubMed
19.
go back to reference Gabrilovich D, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103CrossRefPubMed Gabrilovich D, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103CrossRefPubMed
20.
go back to reference Sombroek CC, Stam AGM, Masterson AJ et al (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168(9):4333–4343PubMed Sombroek CC, Stam AGM, Masterson AJ et al (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168(9):4333–4343PubMed
21.
go back to reference Sharma S, Stolina M, Yang SC et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968PubMed Sharma S, Stolina M, Yang SC et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968PubMed
22.
go back to reference Talmadge J, Hood K, Zobel L, Shafer L, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151CrossRefPubMed Talmadge J, Hood K, Zobel L, Shafer L, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151CrossRefPubMed
23.
go back to reference Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513CrossRefPubMed Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513CrossRefPubMed
24.
go back to reference Cheng P, Corzo C, Luetteke N et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249CrossRefPubMed Cheng P, Corzo C, Luetteke N et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249CrossRefPubMed
25.
go back to reference Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123(1):8–13CrossRefPubMed Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123(1):8–13CrossRefPubMed
26.
go back to reference Mantovani A, Schioppa T, Porta C, Allavena P, Antonio Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322CrossRefPubMed Mantovani A, Schioppa T, Porta C, Allavena P, Antonio Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322CrossRefPubMed
27.
go back to reference Biswas SK, Gangi L, Paul S et al (2005) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122CrossRefPubMed Biswas SK, Gangi L, Paul S et al (2005) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122CrossRefPubMed
29.
go back to reference Tai HH, Cho H, Tong M, Ding Y (2006) NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des 12(8):955–962CrossRefPubMed Tai HH, Cho H, Tong M, Ding Y (2006) NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des 12(8):955–962CrossRefPubMed
30.
go back to reference Kusmartsev S, Gabrilovich D (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(2):293–298CrossRefPubMed Kusmartsev S, Gabrilovich D (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(2):293–298CrossRefPubMed
31.
go back to reference Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S (2005) Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 54(11):1137–1142CrossRefPubMed Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S (2005) Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 54(11):1137–1142CrossRefPubMed
32.
go back to reference Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146(2):783–789PubMed Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146(2):783–789PubMed
33.
go back to reference Young MRI, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β and nitric oxide. J Immunol 156(5):1916–1921PubMed Young MRI, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β and nitric oxide. J Immunol 156(5):1916–1921PubMed
34.
go back to reference Bronte V, Chappell DB, Apolloni E et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737PubMed Bronte V, Chappell DB, Apolloni E et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737PubMed
35.
go back to reference Kusmartsev S, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 co-stimulation. J Immunol 165(2):779–785PubMed Kusmartsev S, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 co-stimulation. J Immunol 165(2):779–785PubMed
36.
go back to reference Gabrilovich D, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406PubMed Gabrilovich D, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406PubMed
37.
go back to reference Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145CrossRefPubMed Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145CrossRefPubMed
38.
go back to reference Liu Y, Van Ginderachter J, Brys L, De Baetselier P, Raes G, Geldhof A (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170(10):5064–5074PubMed Liu Y, Van Ginderachter J, Brys L, De Baetselier P, Raes G, Geldhof A (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170(10):5064–5074PubMed
39.
go back to reference Rodriguez PC, Hernandez CP, David Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939CrossRefPubMed Rodriguez PC, Hernandez CP, David Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939CrossRefPubMed
40.
go back to reference Setiadi AF, Omilusik K, David MD et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(7):9601–9607CrossRefPubMed Setiadi AF, Omilusik K, David MD et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(7):9601–9607CrossRefPubMed
41.
go back to reference Villagra A, Cheng F, Wang HW et al (2008) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100CrossRefPubMed Villagra A, Cheng F, Wang HW et al (2008) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100CrossRefPubMed
42.
go back to reference Chang YC, Chen TC, Lee CT et al (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063CrossRefPubMed Chang YC, Chen TC, Lee CT et al (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063CrossRefPubMed
43.
go back to reference Guo ZS, Hong JA, Irvine KR et al (2006) De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66(2):1105–1113CrossRefPubMed Guo ZS, Hong JA, Irvine KR et al (2006) De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66(2):1105–1113CrossRefPubMed
44.
go back to reference Fonsatti E, Nicolay HJ, Sigalotti L et al (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13(11):3333–3338CrossRefPubMed Fonsatti E, Nicolay HJ, Sigalotti L et al (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13(11):3333–3338CrossRefPubMed
45.
go back to reference Kozar K, Kamiński R, Switaj T et al (2003) Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice. Clin Cancer Res 9(8):3124–3133PubMed Kozar K, Kamiński R, Switaj T et al (2003) Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice. Clin Cancer Res 9(8):3124–3133PubMed
46.
go back to reference Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176(1):61–67PubMed Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176(1):61–67PubMed
Metadata
Title
Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine
Authors
Irina Daurkin
Evgeniy Eruslanov
Johannes Vieweg
Sergei Kusmartsev
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 5/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0786-4

Other articles of this Issue 5/2010

Cancer Immunology, Immunotherapy 5/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine