Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2010

01-05-2010 | Original Article

Intratumoral CD8+ T/FOXP3+ cell ratio is a predictive marker for survival in patients with colorectal cancer

Authors: Hiroyuki Suzuki, Nobuhito Chikazawa, Takehiko Tasaka, Junji Wada, Akio Yamasaki, Yoshiki Kitaura, Masae Sozaki, Masao Tanaka, Hideya Onishi, Takashi Morisaki, Mitsuo Katano

Published in: Cancer Immunology, Immunotherapy | Issue 5/2010

Login to get access

Abstract

The human immune system consists of a balance between immune surveillance against non-self antigens and tolerance of self-antigens. CD8+ T cells and CD4+ regulatory T cells (Tregs) are the main players for immune surveillance and tolerance, respectively. We examined immunohistochemically the immunological balance at the tumor site using 94 surgically resected colorectal cancer tissues. Forkhead box P3 (FOXP3)+ cells were considered to be Tregs in the present study. The number of intratumoral FOXP3+ cells (itFOXP3+ cells) was positively correlated with lymph node metastases (P = 0.030). itCD8+ T/itFOXP3+ cell ratio negatively correlated with pathological stages (P = 0.048). Next, relationship between the number of itCD8+ T cells or itFOXP3+ cells and survival prognosis in 94 patients who underwent a curative resection was analyzed. Only itCD8+ T/itFOXP3+ cell ratio positively correlated with disease-free survival (0.023) and overall survival (P = 0.010). Multivariate analysis indicated that itCD8+ T/itFOXP3+ cell ratio is an independent prognostic factor (P = 0.035) of overall survival. The number of itFOXP3+ cells positively correlated with transforming growth factor-beta TGF-β production at the tumor site (P = 0.020). In conclusion, itCD8+ T/itFOXP3+ cell ratio is a predictive marker for both disease-free survival time and overall survival time in patients with colorectal cancer. Importantly, itCD8+ T/itFOXP3+ cell ratio may be an independent prognostic factor. And, tumor-producing TGF-β may contribute to the increased number of itFOXP3+ cells.
Literature
1.
go back to reference Akbar AN, Vukmanovic-Stejic M, Taams LS et al (2007) The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7:231–237CrossRefPubMed Akbar AN, Vukmanovic-Stejic M, Taams LS et al (2007) The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7:231–237CrossRefPubMed
2.
go back to reference Bates GJ, Fox SB, Han C et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380CrossRefPubMed Bates GJ, Fox SB, Han C et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380CrossRefPubMed
3.
go back to reference Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity An explanation for progressive growth of an immunogenic tumor. J Exp Med 151:69–80CrossRefPubMed Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity An explanation for progressive growth of an immunogenic tumor. J Exp Med 151:69–80CrossRefPubMed
4.
go back to reference Boon T, Cerottini JC, Van den Eynde B et al (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365CrossRefPubMed Boon T, Cerottini JC, Van den Eynde B et al (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365CrossRefPubMed
5.
go back to reference Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMed Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMed
6.
go back to reference Cohen AM, Tremiterra S, Candela F et al (1991) Prognosis of node-positive colon cancer. Cancer 67:1859–1861CrossRefPubMed Cohen AM, Tremiterra S, Candela F et al (1991) Prognosis of node-positive colon cancer. Cancer 67:1859–1861CrossRefPubMed
7.
go back to reference Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMed Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMed
8.
go back to reference Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81CrossRefPubMed Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81CrossRefPubMed
9.
go back to reference Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed
10.
go back to reference Fantini MC, Becker C, Monteleone G et al (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153PubMed Fantini MC, Becker C, Monteleone G et al (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153PubMed
11.
go back to reference Fu J, Xu D, Liu Z et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339CrossRefPubMed Fu J, Xu D, Liu Z et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339CrossRefPubMed
12.
go back to reference Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964 Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964
13.
go back to reference Gao Q, Qiu SJ, Fan J et al (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593CrossRefPubMed Gao Q, Qiu SJ, Fan J et al (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593CrossRefPubMed
14.
go back to reference Grabenbauer GG, Lahmer G, Distel L et al (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360CrossRefPubMed Grabenbauer GG, Lahmer G, Distel L et al (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360CrossRefPubMed
15.
go back to reference Hashimoto K, Nio Y, Sumi S et al (2001) Correlation between TGF-b1 and p21 (WAF1/CIP1) expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. Pancreas 22:341–347CrossRefPubMed Hashimoto K, Nio Y, Sumi S et al (2001) Correlation between TGF-b1 and p21 (WAF1/CIP1) expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. Pancreas 22:341–347CrossRefPubMed
16.
go back to reference Hiraoka N, Onozato K, Kosuge T et al (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434CrossRefPubMed Hiraoka N, Onozato K, Kosuge T et al (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434CrossRefPubMed
17.
go back to reference Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMed Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMed
18.
19.
go back to reference Ling KL, Pratap SE, Bates GJ et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7PubMed Ling KL, Pratap SE, Bates GJ et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7PubMed
20.
go back to reference Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMed Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMed
21.
go back to reference Loddenkemper C, Schernus M, Noutsias M et al (2006) In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 4:52CrossRefPubMed Loddenkemper C, Schernus M, Noutsias M et al (2006) In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 4:52CrossRefPubMed
22.
go back to reference Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822CrossRefPubMed Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822CrossRefPubMed
23.
go back to reference Marie JC, Letterio JJ, Gavin M et al (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067CrossRefPubMed Marie JC, Letterio JJ, Gavin M et al (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067CrossRefPubMed
24.
go back to reference Naito Y, Saito K, Shiiba K et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494PubMed Naito Y, Saito K, Shiiba K et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494PubMed
25.
go back to reference Nomura T, Sakaguchi S (2005) Naturally arising CD25+ CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293:287–302CrossRefPubMed Nomura T, Sakaguchi S (2005) Naturally arising CD25+ CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293:287–302CrossRefPubMed
26.
go back to reference Peng Y, Laouar Y, Li MO et al (2004) TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+ CD25+ regulatory T cells responsible for protection against diabetes. P Natl Acad Sci USA 101:4572–4577CrossRef Peng Y, Laouar Y, Li MO et al (2004) TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+ CD25+ regulatory T cells responsible for protection against diabetes. P Natl Acad Sci USA 101:4572–4577CrossRef
27.
go back to reference Ropponen KM, Eskelinen MJ, Lipponen PK et al (1997) Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol 182:318–324CrossRefPubMed Ropponen KM, Eskelinen MJ, Lipponen PK et al (1997) Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol 182:318–324CrossRefPubMed
28.
go back to reference Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMed Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMed
29.
go back to reference Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed
30.
go back to reference Sasada T, Kimura M, Yoshida Y et al (2003) CD4+ CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099CrossRefPubMed Sasada T, Kimura M, Yoshida Y et al (2003) CD4+ CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099CrossRefPubMed
31.
go back to reference Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. P Natl Acad Sci USA 102:18538–18543CrossRef Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. P Natl Acad Sci USA 102:18538–18543CrossRef
32.
go back to reference Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400PubMed Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400PubMed
33.
go back to reference Sundrud MS, Rao A (2007) New twists of T cell fate: control of T cell activation and tolerance by TGF-beta and NFAT. Curr Opin Immunol 19:287–293CrossRefPubMed Sundrud MS, Rao A (2007) New twists of T cell fate: control of T cell activation and tolerance by TGF-beta and NFAT. Curr Opin Immunol 19:287–293CrossRefPubMed
34.
go back to reference Vukmanovic-Stejic M, Zhang Y, Cook JE et al (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423–2433CrossRefPubMed Vukmanovic-Stejic M, Zhang Y, Cook JE et al (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423–2433CrossRefPubMed
35.
go back to reference Wolf AM, Wolf D, Steurer M et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612PubMed Wolf AM, Wolf D, Steurer M et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612PubMed
36.
go back to reference Wolf D, Wolf AM, Rumpold H et al (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331CrossRefPubMed Wolf D, Wolf AM, Rumpold H et al (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331CrossRefPubMed
37.
go back to reference Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276PubMed Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276PubMed
38.
go back to reference Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213CrossRefPubMed Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213CrossRefPubMed
Metadata
Title
Intratumoral CD8+ T/FOXP3+ cell ratio is a predictive marker for survival in patients with colorectal cancer
Authors
Hiroyuki Suzuki
Nobuhito Chikazawa
Takehiko Tasaka
Junji Wada
Akio Yamasaki
Yoshiki Kitaura
Masae Sozaki
Masao Tanaka
Hideya Onishi
Takashi Morisaki
Mitsuo Katano
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 5/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0781-9

Other articles of this Issue 5/2010

Cancer Immunology, Immunotherapy 5/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine