Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 2/2010

01-02-2010 | Review

Multimer technologies for detection and adoptive transfer of antigen-specific T cells

Authors: Rosaely Casalegno-Garduño, Anita Schmitt, Junxia Yao, Xinchao Wang, Xun Xu, Mathias Freund, Michael Schmitt

Published in: Cancer Immunology, Immunotherapy | Issue 2/2010

Login to get access

Abstract

Identification and purification of antigen-specific T cells without altering their functional status are of high scientific and clinical interest. Staining with major histocompatibility complex (MHC)-peptide multimers constitutes a very powerful method to study antigen-specific T-cell subpopulations, allowing their direct visualization and quantification. MHC-peptide multimers, such as dimers, tetramers, pentamers, streptamers, dextramers and octamers have been used to evaluate the frequency of CD8+ T cells, specific for tumor/leukemia-associated antigens as well as for viral antigens, e.g., CMVpp65 and EBV-EBNA. Moreover, MHC-peptide multimers have been used for rapid and efficient ex vivo isolation and expansion of T cells. A recent development in the field of MHC-peptide multimers led to the purification of CD8+ T cells specific for leukemia antigens. This might help to select leukemia-specific donor lymphocyte infusions (DLIs), thus allowing dissection of the noxious graft-versus-host disease (GvHD) from beneficial anti-viral and even anti-leukemic effects. This review covers different types of MHC-peptide multimers and their applications, as well as the impact that multimers might have on further development of DLIs.
Literature
1.
go back to reference Hebart H, Rauser G, Stevanovic S et al (2003) A CTL epitope from human cytomegalovirus IE1 defined by combining prediction of HLA binding and proteasomal immune responses in patients after allogeneic stem cell transplantation. Exp Hematol 31:966–973CrossRefPubMed Hebart H, Rauser G, Stevanovic S et al (2003) A CTL epitope from human cytomegalovirus IE1 defined by combining prediction of HLA binding and proteasomal immune responses in patients after allogeneic stem cell transplantation. Exp Hematol 31:966–973CrossRefPubMed
2.
go back to reference Manley TJ, Luy L, Jones T et al (2004) Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104:1075–1082CrossRefPubMed Manley TJ, Luy L, Jones T et al (2004) Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104:1075–1082CrossRefPubMed
3.
go back to reference Grigoleit GU, Kapp M, Hebart H et al (2007) Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)-specific cytotoxic T-lymphocyte responses even in patients receiving a transplant from an HCMV-seronegative donor. J Infect Dis 196:699–704CrossRefPubMed Grigoleit GU, Kapp M, Hebart H et al (2007) Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)-specific cytotoxic T-lymphocyte responses even in patients receiving a transplant from an HCMV-seronegative donor. J Infect Dis 196:699–704CrossRefPubMed
4.
go back to reference Chattopadhyay PK, Hogerkorp CM, Roederer M (2008) A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125:441–449CrossRefPubMed Chattopadhyay PK, Hogerkorp CM, Roederer M (2008) A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125:441–449CrossRefPubMed
5.
go back to reference Duplan V, Suberbielle E, Napper CE et al (2007) Tracking antigen-specific CD8+ T cells in the rat using MHC class I multimers. J Immunol Methods 320:30–39CrossRefPubMed Duplan V, Suberbielle E, Napper CE et al (2007) Tracking antigen-specific CD8+ T cells in the rat using MHC class I multimers. J Immunol Methods 320:30–39CrossRefPubMed
6.
go back to reference Svensson A, Nordström I, Sun JB, Eriksson K (2005) Protective immunity to genital herpes simplex [correction of simpex] virus type 2 infection is mediated by T-bet. J Immunol 174:6266–6273PubMed Svensson A, Nordström I, Sun JB, Eriksson K (2005) Protective immunity to genital herpes simplex [correction of simpex] virus type 2 infection is mediated by T-bet. J Immunol 174:6266–6273PubMed
7.
go back to reference Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599CrossRefPubMed Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599CrossRefPubMed
8.
go back to reference Knabel M, Franz TJ, Schiemann M et al (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631–637CrossRefPubMed Knabel M, Franz TJ, Schiemann M et al (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631–637CrossRefPubMed
9.
go back to reference Batard P, Peterson DA, Devêvre E et al (2006) Dextramers: new generation of fluorescent MHC class I/peptide multimers for visualization of antigen-specific CD8+ T cells. J Immunol Methods 310:136–148CrossRefPubMed Batard P, Peterson DA, Devêvre E et al (2006) Dextramers: new generation of fluorescent MHC class I/peptide multimers for visualization of antigen-specific CD8+ T cells. J Immunol Methods 310:136–148CrossRefPubMed
10.
go back to reference Guillaume P, Legler DF, Boucheron N et al (2003) Soluble major histocompatibility complex-peptide octamers with impaired CD8 binding selectively induce FAS-dependent apoptosis. J Biol Chem 278:4500–4509CrossRefPubMed Guillaume P, Legler DF, Boucheron N et al (2003) Soluble major histocompatibility complex-peptide octamers with impaired CD8 binding selectively induce FAS-dependent apoptosis. J Biol Chem 278:4500–4509CrossRefPubMed
11.
go back to reference Schneck JP (2000) Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol Invest 29:163–169CrossRefPubMed Schneck JP (2000) Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol Invest 29:163–169CrossRefPubMed
12.
go back to reference Dal Porto J, Johansen TE, Catipović B et al (1993) A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc Natl Acad Sci USA 90:6671–6675CrossRefPubMed Dal Porto J, Johansen TE, Catipović B et al (1993) A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc Natl Acad Sci USA 90:6671–6675CrossRefPubMed
13.
go back to reference Greten TF, Schneck JP (2002) Development and use of multimeric major histocompatibility complex molecules. Clin Diagn Lab Immunol 9:216–220PubMed Greten TF, Schneck JP (2002) Development and use of multimeric major histocompatibility complex molecules. Clin Diagn Lab Immunol 9:216–220PubMed
14.
go back to reference Neudorfer J, Schmidt B, Huster KM et al (2007) Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 320:119–131CrossRefPubMed Neudorfer J, Schmidt B, Huster KM et al (2007) Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 320:119–131CrossRefPubMed
15.
go back to reference Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96CrossRefPubMed Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96CrossRefPubMed
16.
go back to reference Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T-cell responses. Annu Rev Immunol 18:561–592CrossRefPubMed Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T-cell responses. Annu Rev Immunol 18:561–592CrossRefPubMed
17.
go back to reference Wooldridge L, Lissina A, Cole D et al (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126:147–164CrossRefPubMed Wooldridge L, Lissina A, Cole D et al (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126:147–164CrossRefPubMed
18.
go back to reference Junttila MR, Saarinen S, Schmidt T et al (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203CrossRefPubMed Junttila MR, Saarinen S, Schmidt T et al (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203CrossRefPubMed
19.
go back to reference Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods 6:497–499CrossRefPubMed Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods 6:497–499CrossRefPubMed
20.
go back to reference Hadrup SR, Bakker AH, Shu CJ et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526CrossRefPubMed Hadrup SR, Bakker AH, Shu CJ et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526CrossRefPubMed
21.
go back to reference Hardrup SR, Toebes M, Rodenko B et al (2009) High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol Biol 524:383–405CrossRef Hardrup SR, Toebes M, Rodenko B et al (2009) High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol Biol 524:383–405CrossRef
22.
go back to reference Bakker AH, Hoppes R, Linnemann C et al (2008) Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci USA 105:3825–3830CrossRefPubMed Bakker AH, Hoppes R, Linnemann C et al (2008) Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci USA 105:3825–3830CrossRefPubMed
23.
go back to reference Barnes E, Ward SM, Kasprowicz VO et al (2004) Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells. Eur J Immunol 34:1570–1577CrossRefPubMed Barnes E, Ward SM, Kasprowicz VO et al (2004) Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells. Eur J Immunol 34:1570–1577CrossRefPubMed
24.
go back to reference Harcourt GC, Scriba TJ, Semmo N et al (2006) Identification of key peptide-specific CD4+ T cell responses to human cytomegalovirus: implications for tracking antiviral populations. Clin Exp Immunol 146:203–210CrossRefPubMed Harcourt GC, Scriba TJ, Semmo N et al (2006) Identification of key peptide-specific CD4+ T cell responses to human cytomegalovirus: implications for tracking antiviral populations. Clin Exp Immunol 146:203–210CrossRefPubMed
25.
go back to reference Scriba TJ, Purbhoo M, Day CL et al (2005) Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining. J Immunol 175:6334–6343PubMed Scriba TJ, Purbhoo M, Day CL et al (2005) Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining. J Immunol 175:6334–6343PubMed
26.
go back to reference Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al (2008) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–2244CrossRefPubMed Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al (2008) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–2244CrossRefPubMed
27.
go back to reference Bouquié R, Bonnin A, Bernardeau K et al (2009) A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor-specific T lymphocytes. Cancer Immunol Immunother 58:553–566CrossRefPubMed Bouquié R, Bonnin A, Bernardeau K et al (2009) A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor-specific T lymphocytes. Cancer Immunol Immunother 58:553–566CrossRefPubMed
28.
go back to reference Greten TF, Slansky JE, Kubota R et al (1998) Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95:7568–7573CrossRefPubMed Greten TF, Slansky JE, Kubota R et al (1998) Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95:7568–7573CrossRefPubMed
29.
go back to reference Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 5:677–685CrossRefPubMed Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 5:677–685CrossRefPubMed
30.
go back to reference Busch DH, Pamer EG (1998) MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448PubMed Busch DH, Pamer EG (1998) MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448PubMed
31.
go back to reference Keenan RD, Ainsworth J, Khan N et al (2001) Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 115:428–434CrossRefPubMed Keenan RD, Ainsworth J, Khan N et al (2001) Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 115:428–434CrossRefPubMed
32.
go back to reference Appay V, Nixon DF, Donahoe SM et al (2000) HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75CrossRefPubMed Appay V, Nixon DF, Donahoe SM et al (2000) HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75CrossRefPubMed
33.
go back to reference Choi EM, Chen JL, Wooldridge L et al (2003) High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol 171:5116–5123PubMed Choi EM, Chen JL, Wooldridge L et al (2003) High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol 171:5116–5123PubMed
34.
go back to reference Oelke M, Maus MV, Didiano D et al (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624CrossRefPubMed Oelke M, Maus MV, Didiano D et al (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624CrossRefPubMed
35.
go back to reference Rauser G, Einsele H, Sinzger C et al (2003) Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into allogeneic stem cell transplant recipients. Blood 103:3565–3572CrossRefPubMed Rauser G, Einsele H, Sinzger C et al (2003) Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into allogeneic stem cell transplant recipients. Blood 103:3565–3572CrossRefPubMed
36.
go back to reference Widmann T, Sester U, Gartner BC et al (2008) Levels of CMV-specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS One 3:1–9CrossRef Widmann T, Sester U, Gartner BC et al (2008) Levels of CMV-specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS One 3:1–9CrossRef
37.
go back to reference Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T-cell receptor repertoire selection during an immune response. Immunity 10:485–492CrossRefPubMed Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T-cell receptor repertoire selection during an immune response. Immunity 10:485–492CrossRefPubMed
38.
go back to reference Britten CM, Gouttefangeas C, Welters MJ et al (2008) The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8(+) T lymphocytes by structural and functional assays. Cancer Immunol Immunother 57:258–285 Britten CM, Gouttefangeas C, Welters MJ et al (2008) The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8(+) T lymphocytes by structural and functional assays. Cancer Immunol Immunother 57:258–285
39.
go back to reference Britten CM, Janetzki S, Ben-Porat L et al (2009) Harmonization guidelines for HLA-peptide multimer assays derived from results of a large-scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunol Immunother 58:1701–1713CrossRefPubMed Britten CM, Janetzki S, Ben-Porat L et al (2009) Harmonization guidelines for HLA-peptide multimer assays derived from results of a large-scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunol Immunother 58:1701–1713CrossRefPubMed
41.
go back to reference Yao J, Bechter C, Wiesneth M et al (2008) Multimer staining of CMVpp65-specific T cells for diagnosis and therapeutic purpose—a comparative study. Clin Infect Dis 46:96–105CrossRef Yao J, Bechter C, Wiesneth M et al (2008) Multimer staining of CMVpp65-specific T cells for diagnosis and therapeutic purpose—a comparative study. Clin Infect Dis 46:96–105CrossRef
42.
go back to reference Casares S, Hurtado A, McEvoy RC et al (2002) Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nat Immunol 3:383–391CrossRefPubMed Casares S, Hurtado A, McEvoy RC et al (2002) Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nat Immunol 3:383–391CrossRefPubMed
43.
go back to reference Reijonen H, Novak EJ, Kochik S et al (2002) Detection of GAD65-specific T cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51:1375–1382CrossRefPubMed Reijonen H, Novak EJ, Kochik S et al (2002) Detection of GAD65-specific T cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51:1375–1382CrossRefPubMed
44.
go back to reference Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMed Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMed
45.
go back to reference Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130PubMed Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130PubMed
46.
go back to reference Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112:4371–4383CrossRefPubMed Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112:4371–4383CrossRefPubMed
47.
go back to reference Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed
48.
go back to reference Viola A, Lanzavecchia A (1996) T-cell activation determined by T-cell receptor number and tunable thresholds. Science 273:104–106CrossRefPubMed Viola A, Lanzavecchia A (1996) T-cell activation determined by T-cell receptor number and tunable thresholds. Science 273:104–106CrossRefPubMed
49.
go back to reference Sykulev Y, Joo M, Vturina I et al (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T-cell response. Immunity 4:565–571CrossRefPubMed Sykulev Y, Joo M, Vturina I et al (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T-cell response. Immunity 4:565–571CrossRefPubMed
50.
go back to reference Roback JD (2006) Vaccine-enhanced donor lymphocyte infusion. Hematology 486–491 Roback JD (2006) Vaccine-enhanced donor lymphocyte infusion. Hematology 486–491
51.
go back to reference Boeckh M, Nichols WG, Papanicolaou G et al (2003) Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 9:543–558CrossRefPubMed Boeckh M, Nichols WG, Papanicolaou G et al (2003) Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 9:543–558CrossRefPubMed
52.
go back to reference Langston AA, Redei I, Caliendo AM et al (2002) Development of drug-resistant herpes simplex virus infection after haploidentical hematopoietic progenitor cell transplantation. Blood 99:1085–1088CrossRefPubMed Langston AA, Redei I, Caliendo AM et al (2002) Development of drug-resistant herpes simplex virus infection after haploidentical hematopoietic progenitor cell transplantation. Blood 99:1085–1088CrossRefPubMed
53.
go back to reference Levy RB, Jones M, Cray C (1990) HSV-1 enhances GvHR-associated parent anti-F1 alloreactivity in vivo and in vitro. Cell Immunol 129:1–12CrossRefPubMed Levy RB, Jones M, Cray C (1990) HSV-1 enhances GvHR-associated parent anti-F1 alloreactivity in vivo and in vitro. Cell Immunol 129:1–12CrossRefPubMed
54.
go back to reference Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101:407–414CrossRefPubMed Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101:407–414CrossRefPubMed
55.
go back to reference Kolb HJ, Schmid A, Barret AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767–776CrossRefPubMed Kolb HJ, Schmid A, Barret AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767–776CrossRefPubMed
56.
go back to reference Riddell SR, Watanabe KS, Goodrich JM et al (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257:238–241CrossRefPubMed Riddell SR, Watanabe KS, Goodrich JM et al (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257:238–241CrossRefPubMed
57.
go back to reference Tiberghien P, Ferrand C, Lioure B et al (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97:63–72CrossRefPubMed Tiberghien P, Ferrand C, Lioure B et al (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97:63–72CrossRefPubMed
58.
go back to reference Einsele H, Roosnek E, Rufer N et al (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922CrossRefPubMed Einsele H, Roosnek E, Rufer N et al (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922CrossRefPubMed
59.
go back to reference Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044CrossRefPubMed Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044CrossRefPubMed
60.
go back to reference Mandigers CMPW, Verdonck LF, Meijerink JPP et al (2003) Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapse after allogeneic stem cell transplantation. Bone Marrow Transplant 32:1159–1163CrossRefPubMed Mandigers CMPW, Verdonck LF, Meijerink JPP et al (2003) Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapse after allogeneic stem cell transplantation. Bone Marrow Transplant 32:1159–1163CrossRefPubMed
61.
go back to reference Mackinnon S, Papadopoulos EB, Carabasi MH et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86:1261–1268PubMed Mackinnon S, Papadopoulos EB, Carabasi MH et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86:1261–1268PubMed
62.
go back to reference Bonini C, Ferrari G, Verzelletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 276:1719–1724CrossRefPubMed Bonini C, Ferrari G, Verzelletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 276:1719–1724CrossRefPubMed
63.
go back to reference Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257CrossRefPubMed Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257CrossRefPubMed
64.
go back to reference Molldrem JJ, Lee PP, Wang C et al (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023CrossRefPubMed Molldrem JJ, Lee PP, Wang C et al (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023CrossRefPubMed
65.
go back to reference Wang X, Schmitt A, Germeroth L et al (2009) Generation of leukemia antigen-specific donor lymphocyte infusions powered by streptamer-based selection. Bone Marrow Transplant 43:S73 Wang X, Schmitt A, Germeroth L et al (2009) Generation of leukemia antigen-specific donor lymphocyte infusions powered by streptamer-based selection. Bone Marrow Transplant 43:S73
66.
go back to reference Schmitt A, Tonn T, Busch DH et al (2009) Adoptive transfer and consequential selective reconstitution of streptamers-selected cytomegalovirus-specific CD8+ T cells leads to enduring virus clearance in patients after allogeneic stem cell transplantation. Bone Marrow Transplant 43:S246 Schmitt A, Tonn T, Busch DH et al (2009) Adoptive transfer and consequential selective reconstitution of streptamers-selected cytomegalovirus-specific CD8+ T cells leads to enduring virus clearance in patients after allogeneic stem cell transplantation. Bone Marrow Transplant 43:S246
Metadata
Title
Multimer technologies for detection and adoptive transfer of antigen-specific T cells
Authors
Rosaely Casalegno-Garduño
Anita Schmitt
Junxia Yao
Xinchao Wang
Xun Xu
Mathias Freund
Michael Schmitt
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 2/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0778-4

Other articles of this Issue 2/2010

Cancer Immunology, Immunotherapy 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine