Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 9/2009

01-09-2009 | Focussed Research Review

The prevention and treatment of cytomegalovirus infection in haematopoietic stem cell transplantation

Authors: Mark Tuthill, Frederick Chen, Samantha Paston, Hugo De La Peña, Sylvie Rusakiewicz, Alejandro Madrigal

Published in: Cancer Immunology, Immunotherapy | Issue 9/2009

Login to get access

Abstract

Allogeneic haematopoietic stem cell transplantation (HSCT) is an intensive medical treatment involving myeloablative chemo-radiotherapy followed by stem cell rescue using allogeneic haematopoietic stem cells harvested from HLA-matched donors, which is primarily used for the treatment of haematological malignancies. Cytomegalovirus (CMV) infection is one of the major causes of morbidity and death after HSCT. This focused research review highlights the advances made with research into CMV in the HSCT setting. It provides the reader with an overview of current CMV research into the prevention and management of CMV infection.
Literature
1.
go back to reference Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed
2.
go back to reference Gratwohl A, Brand R, Frassoni F et al (2005) Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant 36:757–769PubMedCrossRef Gratwohl A, Brand R, Frassoni F et al (2005) Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant 36:757–769PubMedCrossRef
3.
go back to reference Fischer SA (2008) Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 86:1327–1339PubMedCrossRef Fischer SA (2008) Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 86:1327–1339PubMedCrossRef
4.
go back to reference Alford CA, Stagno S, Pass RF, Britt WJ (1990) Congenital and perinatal cytomegalovirus infections. Rev Infect Dis 12:S745–S753PubMed Alford CA, Stagno S, Pass RF, Britt WJ (1990) Congenital and perinatal cytomegalovirus infections. Rev Infect Dis 12:S745–S753PubMed
5.
go back to reference Paston SJ, Dodi IA, Madrigal JA (2004) Progress made towards the development of a CMV peptide vaccine. Hum Immunol 65:544–549PubMedCrossRef Paston SJ, Dodi IA, Madrigal JA (2004) Progress made towards the development of a CMV peptide vaccine. Hum Immunol 65:544–549PubMedCrossRef
6.
go back to reference Gamadia LE, Remmerswaal EB, Weel JF et al (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692PubMedCrossRef Gamadia LE, Remmerswaal EB, Weel JF et al (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692PubMedCrossRef
7.
go back to reference Casazza JP, Betts MR, Price DA et al (2006) Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med 203:2865–2877PubMedCrossRef Casazza JP, Betts MR, Price DA et al (2006) Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med 203:2865–2877PubMedCrossRef
8.
go back to reference Pourgheysari B, Piper KP, McLarnon A et al (2008) Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant [Epub ahead of print] Pourgheysari B, Piper KP, McLarnon A et al (2008) Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant [Epub ahead of print]
9.
go back to reference Wills MR, Carmichael AJ, Mynard K et al (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579PubMed Wills MR, Carmichael AJ, Mynard K et al (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579PubMed
10.
go back to reference Riddell SR, Rabin M, Geballe AP et al (1991) Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 146:2795–2804PubMed Riddell SR, Rabin M, Geballe AP et al (1991) Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 146:2795–2804PubMed
11.
go back to reference Solache A, Morgan CL, Dodi AI et al (1999) Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol 163:5512–5518PubMed Solache A, Morgan CL, Dodi AI et al (1999) Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol 163:5512–5518PubMed
12.
go back to reference Kern F, Surel IP, Faulhaber N et al (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73:8179–8184PubMed Kern F, Surel IP, Faulhaber N et al (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73:8179–8184PubMed
13.
go back to reference Gyulai Z, Endresz V, Burian K et al (2000) Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181:1537–1546PubMedCrossRef Gyulai Z, Endresz V, Burian K et al (2000) Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181:1537–1546PubMedCrossRef
14.
go back to reference Stanley SM, Dodi IA, Evans CR et al (2006) Layer guided-acoustic plate mode biosensors for monitoring MHC-peptide interactions. Analyst 131:892–894PubMedCrossRef Stanley SM, Dodi IA, Evans CR et al (2006) Layer guided-acoustic plate mode biosensors for monitoring MHC-peptide interactions. Analyst 131:892–894PubMedCrossRef
15.
go back to reference Lacey SF, Villacres MC, La Rosa C et al (2003) Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 alleles. Hum Immunol 64:440–452PubMedCrossRef Lacey SF, Villacres MC, La Rosa C et al (2003) Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 alleles. Hum Immunol 64:440–452PubMedCrossRef
16.
go back to reference Höllsberg P (2002) Contribution of HLA class I allele expression to CD8+ T-cell responses against Epstein-Barr virus. Scand J Immunol 55:189–195PubMedCrossRef Höllsberg P (2002) Contribution of HLA class I allele expression to CD8+ T-cell responses against Epstein-Barr virus. Scand J Immunol 55:189–195PubMedCrossRef
17.
go back to reference Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96PubMedCrossRef Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96PubMedCrossRef
18.
go back to reference Callan MF, Tan L, Annels N et al (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187:1395–1402PubMedCrossRef Callan MF, Tan L, Annels N et al (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187:1395–1402PubMedCrossRef
19.
go back to reference Chen FE, Aubert G, Travers P et al (2002) HLA tetramers and anti-CMV immune responses: from epitope to immunotherapy. Cytotherapy 4:41–48PubMedCrossRef Chen FE, Aubert G, Travers P et al (2002) HLA tetramers and anti-CMV immune responses: from epitope to immunotherapy. Cytotherapy 4:41–48PubMedCrossRef
20.
go back to reference Aubert G, Hassan-Walker AF, Madrigal JA et al (2001) Cytomegalovirus-specific cellular immune responses and viremia in recipients of allogeneic stem cell transplants. J Infect Dis 184:955–963PubMedCrossRef Aubert G, Hassan-Walker AF, Madrigal JA et al (2001) Cytomegalovirus-specific cellular immune responses and viremia in recipients of allogeneic stem cell transplants. J Infect Dis 184:955–963PubMedCrossRef
21.
go back to reference Cwynarski K, Ainsworth J, Cobbold M et al (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97:1232–1240PubMedCrossRef Cwynarski K, Ainsworth J, Cobbold M et al (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97:1232–1240PubMedCrossRef
22.
go back to reference Ganepola S, Gentilini C, Hilbers U et al (2007) Patients at high risk for CMV infection and disease show delayed CD8+ T-cell immune recovery after allogeneic stem cell transplantation. Bone Marrow Transplant 39:293–299PubMedCrossRef Ganepola S, Gentilini C, Hilbers U et al (2007) Patients at high risk for CMV infection and disease show delayed CD8+ T-cell immune recovery after allogeneic stem cell transplantation. Bone Marrow Transplant 39:293–299PubMedCrossRef
23.
go back to reference Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101:407–414PubMedCrossRef Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101:407–414PubMedCrossRef
24.
go back to reference Ozdemir E, Saliba RM, Champlin RE et al (2007) Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant 40:125–136PubMedCrossRef Ozdemir E, Saliba RM, Champlin RE et al (2007) Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant 40:125–136PubMedCrossRef
25.
go back to reference Andrei G, De Clercq E, Snoeck R (2008) Novel inhibitors of human CMV. Curr Opin Investig Drugs 9:32–45 Andrei G, De Clercq E, Snoeck R (2008) Novel inhibitors of human CMV. Curr Opin Investig Drugs 9:32–45
26.
go back to reference Mercorelli B, Sinigalia E, Loregian A, Palù G (2008) Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 18:177–210PubMedCrossRef Mercorelli B, Sinigalia E, Loregian A, Palù G (2008) Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 18:177–210PubMedCrossRef
27.
go back to reference Goodrich JM, Bowden RA, Fisher L et al (1993) Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med 118:173–178PubMed Goodrich JM, Bowden RA, Fisher L et al (1993) Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med 118:173–178PubMed
28.
go back to reference Li CR, Greenberg PD, Gilbert MJ et al (1994) Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 83:1971–1979PubMed Li CR, Greenberg PD, Gilbert MJ et al (1994) Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 83:1971–1979PubMed
29.
go back to reference Schmidt-Hieber M, Schwarck S, Stroux A et al (2009) Prophylactic i.v. Igs in patients with a high risk for CMV after allo-SCT. Bone Marrow Transplant [Epub ahead of print] Schmidt-Hieber M, Schwarck S, Stroux A et al (2009) Prophylactic i.v. Igs in patients with a high risk for CMV after allo-SCT. Bone Marrow Transplant [Epub ahead of print]
30.
go back to reference Bale JF Jr, Petheram SJ, Souza IE, Murph JR (1996) Cytomegalovirus reinfection in young children. J Pediatr 128:347–352PubMedCrossRef Bale JF Jr, Petheram SJ, Souza IE, Murph JR (1996) Cytomegalovirus reinfection in young children. J Pediatr 128:347–352PubMedCrossRef
31.
go back to reference Chandler SH, Handsfield HH, McDougall JK (1987) Isolation of multiple strains of cytomegalovirus from women attending a clinic for sexually transmitted disease. J Infect Dis 155:655–660PubMed Chandler SH, Handsfield HH, McDougall JK (1987) Isolation of multiple strains of cytomegalovirus from women attending a clinic for sexually transmitted disease. J Infect Dis 155:655–660PubMed
32.
go back to reference Plotkin SA, Smiley ML, Friedman HM et al (1984) Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 10:528–530CrossRef Plotkin SA, Smiley ML, Friedman HM et al (1984) Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 10:528–530CrossRef
33.
go back to reference Pass RF, Zhang C, Evans A et al (2009) Vaccine prevention of maternal cytomegalovirus infection. NEJM 360:1191–1199PubMedCrossRef Pass RF, Zhang C, Evans A et al (2009) Vaccine prevention of maternal cytomegalovirus infection. NEJM 360:1191–1199PubMedCrossRef
34.
go back to reference Wloch MK, Smith LR, Boutsaboualoy S et al (2008) Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis 197:1634–1642PubMedCrossRef Wloch MK, Smith LR, Boutsaboualoy S et al (2008) Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis 197:1634–1642PubMedCrossRef
35.
go back to reference Heslop HE, Brenner MK, Rooney C et al (1994) Administration of neomycin-resistance-gene-marked EBV-specific cytotoxic T lymphocytes to recipients of mismatched-related or phenotypically similar unrelated donor marrow grafts. Hum Gene Ther 5:381–397PubMedCrossRef Heslop HE, Brenner MK, Rooney C et al (1994) Administration of neomycin-resistance-gene-marked EBV-specific cytotoxic T lymphocytes to recipients of mismatched-related or phenotypically similar unrelated donor marrow grafts. Hum Gene Ther 5:381–397PubMedCrossRef
36.
go back to reference Rooney CM, Smith CA, Ng C et al (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9–13PubMedCrossRef Rooney CM, Smith CA, Ng C et al (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9–13PubMedCrossRef
37.
go back to reference Madrigal JA, Travers PJ, Dodi IA (2005) Immunotherapeutic aspects of stem cell transplantation. Hematology 10(Suppl 1):289–292PubMedCrossRef Madrigal JA, Travers PJ, Dodi IA (2005) Immunotherapeutic aspects of stem cell transplantation. Hematology 10(Suppl 1):289–292PubMedCrossRef
38.
go back to reference Dolstra H, Preijers F, Van de Wiel-van Kemenade E et al (1995) Expansion of CD8+ CD57+ T cells after allogeneic BMT is related with a low incidence of relapse and with cytomegalovirus infection. Br J Haematol 90:300–307PubMedCrossRef Dolstra H, Preijers F, Van de Wiel-van Kemenade E et al (1995) Expansion of CD8+ CD57+ T cells after allogeneic BMT is related with a low incidence of relapse and with cytomegalovirus infection. Br J Haematol 90:300–307PubMedCrossRef
39.
go back to reference Fallen PR, Duarte RF, McGreavey L et al (2003) Identification of non-naïve CD4+CD45RA+ T cell subsets in adult allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant 32:609–616PubMedCrossRef Fallen PR, Duarte RF, McGreavey L et al (2003) Identification of non-naïve CD4+CD45RA+ T cell subsets in adult allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant 32:609–616PubMedCrossRef
40.
go back to reference Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedCrossRef Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedCrossRef
41.
go back to reference Micklethwaite KP, Clancy L, Sandher U et al (2008) Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood 112:3974–3981PubMedCrossRef Micklethwaite KP, Clancy L, Sandher U et al (2008) Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood 112:3974–3981PubMedCrossRef
42.
go back to reference Myers GD, Krance RA, Weiss H et al (2005) Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant 36:1001–1008PubMedCrossRef Myers GD, Krance RA, Weiss H et al (2005) Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant 36:1001–1008PubMedCrossRef
43.
go back to reference Fujita Y, Rooney CM, Heslop HE (2008) Adoptive cellular immunotherapy for viral diseases. Bone Marrow Transplant 41:193–198PubMedCrossRef Fujita Y, Rooney CM, Heslop HE (2008) Adoptive cellular immunotherapy for viral diseases. Bone Marrow Transplant 41:193–198PubMedCrossRef
44.
go back to reference André F, Chaput N, Schartz NE et al (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136PubMed André F, Chaput N, Schartz NE et al (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136PubMed
45.
go back to reference Segura E, Amigorena S, Thery C (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35:89–93PubMedCrossRef Segura E, Amigorena S, Thery C (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35:89–93PubMedCrossRef
46.
go back to reference De La Peña H, Madrigal JA, Rusakiewicz S et al (2009) Artificial exosomes as tools for basic and clinical immunology. J Immunol Methods [Epub ahead of print] De La Peña H, Madrigal JA, Rusakiewicz S et al (2009) Artificial exosomes as tools for basic and clinical immunology. J Immunol Methods [Epub ahead of print]
47.
go back to reference Babincová M, Altanerová V, Lampert M et al (2000) Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z Naturforsch [C] 55:278–281 Babincová M, Altanerová V, Lampert M et al (2000) Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z Naturforsch [C] 55:278–281
48.
go back to reference Fortin-Ripoche JP, Martina MS, Gazeau F et al (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424PubMedCrossRef Fortin-Ripoche JP, Martina MS, Gazeau F et al (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424PubMedCrossRef
49.
go back to reference Oelke M, Maus MV, Didiano D et al (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–625PubMedCrossRef Oelke M, Maus MV, Didiano D et al (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–625PubMedCrossRef
50.
go back to reference Papanicolaou GA, Latouche JB, Tan C et al (2003) Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 102:2498–2505PubMedCrossRef Papanicolaou GA, Latouche JB, Tan C et al (2003) Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 102:2498–2505PubMedCrossRef
Metadata
Title
The prevention and treatment of cytomegalovirus infection in haematopoietic stem cell transplantation
Authors
Mark Tuthill
Frederick Chen
Samantha Paston
Hugo De La Peña
Sylvie Rusakiewicz
Alejandro Madrigal
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 9/2009
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0722-7

Other articles of this Issue 9/2009

Cancer Immunology, Immunotherapy 9/2009 Go to the issue

Acknowledgement to Reviewers

Acknowledgement

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine