Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2009

01-07-2009 | Short Communication

Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells

Authors: Danita H. Schuurhuis, W. Joost Lesterhuis, Matthijs Kramer, Maaike G. M. Looman, Maaike van Hout-Kuijer, Gerty Schreibelt, A. C. Inge Boullart, Erik H. J. G. Aarntzen, Daniel Benitez-Ribas, Carl G. Figdor, Cornelis J. A. Punt, I. Jolanda M. de Vries, Gosse J. Adema

Published in: Cancer Immunology, Immunotherapy | Issue 7/2009

Login to get access

Abstract

Tumor-derived peptides are used frequently as antigen (Ag) source in dendritic cell (DC) therapy in cancer patients. An alternative is to load DC with tumor-associated Ag (TAA)-encoding RNA. RNA-loading obviates prior knowledge of CTL and Th epitopes in the Ag. Multiple epitopes for many HLA alleles (both MHC class I and class II) are encoded by the RNA and loading is independent of the patient’s HLA make-up. Herein, we determined the optimal conditions for mRNA-electroporation of monocyte-derived DC for clinical application in relation to different maturation cocktails. The data demonstrate that TAA carcinoembryonic antigen, gp100 and tyrosinase are expressed already 30 min after electroporation with the encoding mRNA. Moreover, gp100-specific CTL are activated by gp100 mRNA-electroporated DC. Importantly, we show here that the presence of polyinosinic–polycytidylic acid [poly(I:C)] in the maturation cocktail prevents effective protein expression of the electroporated mRNA as well as subsequent CTL recognition. This effect of poly(I:C) correlates with the induction of IFN-induced genes and innate anti-viral effector molecules in DC. Together these data show that electroporation of mature DC with TAA-encoding mRNA is attractive for use in DC vaccination protocols in cancer patients, but protein expression should be tested for each maturation cocktail.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lesterhuis WJ, Aarntzen EH, de Vries IJ et al (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134PubMedCrossRef Lesterhuis WJ, Aarntzen EH, de Vries IJ et al (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134PubMedCrossRef
2.
go back to reference Tuyaerts S, Aerts JL, Corthals J et al (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 56:1513–1537PubMedCrossRef Tuyaerts S, Aerts JL, Corthals J et al (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 56:1513–1537PubMedCrossRef
3.
go back to reference Jonuleit H, Kuhn U, Muller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142PubMedCrossRef Jonuleit H, Kuhn U, Muller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142PubMedCrossRef
4.
go back to reference Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRef Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRef
5.
go back to reference Sporri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163–170PubMedCrossRef Sporri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163–170PubMedCrossRef
6.
go back to reference Boullart AC, Aarntzen EH, Verdijk P et al (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E(2) results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57:1589–1597PubMedCrossRef Boullart AC, Aarntzen EH, Verdijk P et al (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E(2) results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57:1589–1597PubMedCrossRef
7.
go back to reference Zobywalski A, Javorovic M, Frankenberger B et al (2007) Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J Transl Med 5:18PubMedCrossRef Zobywalski A, Javorovic M, Frankenberger B et al (2007) Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J Transl Med 5:18PubMedCrossRef
8.
go back to reference de Vries IJ, Bernsen MR, Lesterhuis WJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23:5779–5787PubMedCrossRef de Vries IJ, Bernsen MR, Lesterhuis WJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23:5779–5787PubMedCrossRef
9.
go back to reference Fay JW, Palucka AK, Paczesny S et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55:1209–1218PubMedCrossRef Fay JW, Palucka AK, Paczesny S et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55:1209–1218PubMedCrossRef
10.
go back to reference Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRef Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRef
11.
go back to reference Schuler-Thurner B, Schultz ES, Berger TG et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288PubMedCrossRef Schuler-Thurner B, Schultz ES, Berger TG et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288PubMedCrossRef
12.
go back to reference Bonehill A, Heirman C, Tuyaerts S et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657PubMed Bonehill A, Heirman C, Tuyaerts S et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657PubMed
13.
go back to reference Nair SK, Morse M, Boczkowski D et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549PubMedCrossRef Nair SK, Morse M, Boczkowski D et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549PubMedCrossRef
14.
go back to reference Schaft N, Dorrie J, Thumann P et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097PubMed Schaft N, Dorrie J, Thumann P et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097PubMed
15.
go back to reference Grunebach F, Muller MR, Nencioni A, Brossart P (2003) Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther 10:367–374PubMedCrossRef Grunebach F, Muller MR, Nencioni A, Brossart P (2003) Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther 10:367–374PubMedCrossRef
16.
go back to reference Van Meirvenne S, Straetman L, Heirman C et al (2002) Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9:787–797PubMedCrossRef Van Meirvenne S, Straetman L, Heirman C et al (2002) Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9:787–797PubMedCrossRef
17.
go back to reference Javorovic M, Pohla H, Frankenberger B, Wolfel T, Schendel DJ (2005) RNA transfer by electroporation into mature dendritic cells leading to reactivation of effector-memory cytotoxic T lymphocytes: a quantitative analysis. Mol Ther 12:734–743PubMedCrossRef Javorovic M, Pohla H, Frankenberger B, Wolfel T, Schendel DJ (2005) RNA transfer by electroporation into mature dendritic cells leading to reactivation of effector-memory cytotoxic T lymphocytes: a quantitative analysis. Mol Ther 12:734–743PubMedCrossRef
18.
go back to reference Michiels A, Tuyaerts S, Bonehill A et al (2005) Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Ther 12:772–782PubMedCrossRef Michiels A, Tuyaerts S, Bonehill A et al (2005) Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Ther 12:772–782PubMedCrossRef
19.
go back to reference Bakker AB, Schreurs MW, Tafazzul G et al (1995) Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 62:97–102PubMedCrossRef Bakker AB, Schreurs MW, Tafazzul G et al (1995) Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 62:97–102PubMedCrossRef
20.
go back to reference de Vries IJ, Adema GJ, Punt CJ, Figdor CG (2005) Phenotypical and functional characterization of clinical-grade dendritic cells. Methods Mol Med 109:113–126PubMed de Vries IJ, Adema GJ, Punt CJ, Figdor CG (2005) Phenotypical and functional characterization of clinical-grade dendritic cells. Methods Mol Med 109:113–126PubMed
21.
go back to reference Lesterhuis WJ, de Vries IJ, Schuurhuis DH et al (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17:974–980PubMedCrossRef Lesterhuis WJ, de Vries IJ, Schuurhuis DH et al (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17:974–980PubMedCrossRef
22.
go back to reference Bakker AB, Schreurs MW, de Boer AJ et al (1994) Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 179:1005–1009PubMedCrossRef Bakker AB, Schreurs MW, de Boer AJ et al (1994) Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 179:1005–1009PubMedCrossRef
23.
go back to reference Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA (1992) Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol 148:638–643PubMed Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA (1992) Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol 148:638–643PubMed
24.
go back to reference Kawakami Y, Eliyahu S, Delgado CH et al (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91:6458–6462PubMedCrossRef Kawakami Y, Eliyahu S, Delgado CH et al (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91:6458–6462PubMedCrossRef
25.
go back to reference Romani N, Reider D, Heuer M et al (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137–151PubMedCrossRef Romani N, Reider D, Heuer M et al (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137–151PubMedCrossRef
26.
go back to reference Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937PubMedCrossRef Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937PubMedCrossRef
27.
go back to reference Kramer M, Schulte BM, Toonen LW et al (2008) Phagocytosis of picornavirus-infected cells induces an RNA-dependent antiviral state in human dendritic cells. J Virol 82:2930–2937PubMedCrossRef Kramer M, Schulte BM, Toonen LW et al (2008) Phagocytosis of picornavirus-infected cells induces an RNA-dependent antiviral state in human dendritic cells. J Virol 82:2930–2937PubMedCrossRef
28.
go back to reference Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRef Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRef
29.
go back to reference Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRef Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRef
30.
go back to reference de Vries IJ, Lesterhuis WJ, Scharenborg NM et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed de Vries IJ, Lesterhuis WJ, Scharenborg NM et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed
31.
go back to reference Roberts WK, Clemens MJ, Kerr IM (1976) Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA. Proc Natl Acad Sci USA 73:3136–3140PubMedCrossRef Roberts WK, Clemens MJ, Kerr IM (1976) Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA. Proc Natl Acad Sci USA 73:3136–3140PubMedCrossRef
32.
go back to reference Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788PubMedCrossRef Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788PubMedCrossRef
Metadata
Title
Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells
Authors
Danita H. Schuurhuis
W. Joost Lesterhuis
Matthijs Kramer
Maaike G. M. Looman
Maaike van Hout-Kuijer
Gerty Schreibelt
A. C. Inge Boullart
Erik H. J. G. Aarntzen
Daniel Benitez-Ribas
Carl G. Figdor
Cornelis J. A. Punt
I. Jolanda M. de Vries
Gosse J. Adema
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 7/2009
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-008-0626-y

Other articles of this Issue 7/2009

Cancer Immunology, Immunotherapy 7/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine