Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 12/2008

01-12-2008 | Original Article

Targeting activity of a TCR/IL-2 fusion protein against established tumors

Authors: Jinghai Wen, Xiaoyun Zhu, Bai Liu, Lijing You, Lin Kong, Hyung-il Lee, Kai-ping Han, Jeffrey L. Wong, Peter R. Rhode, Hing C. Wong

Published in: Cancer Immunology, Immunotherapy | Issue 12/2008

Login to get access

Abstract

We have previously reported that a single-chain T cell receptor/IL-2 fusion protein (scTCR-IL2) exhibits potent targeted antitumor activity in nude mice bearing human tumor xenografts that display cognate peptide/HLA complexes. In this study, we further explore the mechanism of action of this molecule. We compared the biological activities of c264scTCR-IL2, a scTCR-IL2 protein recognizing the aa264–272 peptide of human p53, with that of MART-1scTCR-IL2, which recognizes the MART-1 melanoma antigen (aa27–35). In vitro studies showed that c264scTCR-IL2 and MART-1scTCR-IL2 were equivalent in their ability to bind cell-surface IL-2 receptors and stimulate NK cell responses. In mice, MART-1scTCR-IL2 was found to have a twofold longer serum half-life than c264scTCR-IL2. However, despite its shorter serum half-life, c264scTCR-IL2 showed significantly better antitumor activity than MART-1scTCR-IL2 against p53+/HLA-A2+ tumor xenografts. The more potent antitumor activity of c264scTCR-IL2 correlated with an enhanced capacity to promote NK cell infiltration into tumors. Similar differences in antigen-dependent tumor infiltration were observed with activated splenocytes pre-treated in vitro with c264scTCR-IL2 or MART-1scTCR-IL2 and then transferred into p53+/HLA-A2+ tumor bearing recipients. The data support a model where c264scTCR-IL2 activates immune cells to express IL-2 receptors. Following stable interactions with cell-surface IL-2 receptors, c264scTCR-IL2 fusion molecule enhances the trafficking of immune cells to tumors displaying target peptide/HLA complexes where the immune cells mediate antitumor effects. Thus, this type of fusion molecule could be used directly as a targeted immunotherapeutic or in adoptive cell transfer approaches to activate and improve the anti-cancer activities of immune cells by providing them with pre-selected antigen recognition capability.
Literature
1.
go back to reference Atkins MB, Regan M, McDermott D (2004) Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma. Clin Cancer Res 10:6342S–6346SPubMedCrossRef Atkins MB, Regan M, McDermott D (2004) Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma. Clin Cancer Res 10:6342S–6346SPubMedCrossRef
2.
go back to reference Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183:2361–2366PubMedCrossRef Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183:2361–2366PubMedCrossRef
3.
go back to reference Belmont HJ, Price-Schiavi S, Liu B, Card KF, Lee HI, Han KP, Wen J, Tang S, Zhu X, Merrill J, Chavillaz PA, Wong JL, Rhode PR, Wong HC (2006) Potent antitumor activity of a tumor-specific soluble TCR/IL-2 fusion protein. Clin Immunol 121:29–39PubMedCrossRef Belmont HJ, Price-Schiavi S, Liu B, Card KF, Lee HI, Han KP, Wen J, Tang S, Zhu X, Merrill J, Chavillaz PA, Wong JL, Rhode PR, Wong HC (2006) Potent antitumor activity of a tumor-specific soluble TCR/IL-2 fusion protein. Clin Immunol 121:29–39PubMedCrossRef
4.
go back to reference Card KF, Price-Schiavi SA, Liu B, Thomson E, Nieves E, Belmont H, Builes J, Jiao JA, Hernandez J, Weidanz J, Sherman L, Francis JL, Amirkhosravi A, Wong HC (2004) A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity. Cancer Immunol Immunother 53:345–357PubMedCrossRef Card KF, Price-Schiavi SA, Liu B, Thomson E, Nieves E, Belmont H, Builes J, Jiao JA, Hernandez J, Weidanz J, Sherman L, Francis JL, Amirkhosravi A, Wong HC (2004) A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity. Cancer Immunol Immunother 53:345–357PubMedCrossRef
5.
go back to reference Chang DZ, Wu Z, Ciardelli TL (1996) A point mutation in interleukin-2 that alters ligand internalization. J Biol Chem 271:13349–13355PubMedCrossRef Chang DZ, Wu Z, Ciardelli TL (1996) A point mutation in interleukin-2 that alters ligand internalization. J Biol Chem 271:13349–13355PubMedCrossRef
6.
go back to reference Christ O, Seiter S, Matzku S, Burger C, Zoller M (2001) Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin Cancer Res 7:985–998PubMed Christ O, Seiter S, Matzku S, Burger C, Zoller M (2001) Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin Cancer Res 7:985–998PubMed
7.
go back to reference Dela Cruz JS, Huang TH, Penichet ML, Morrison SL (2004) Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4:57–64PubMedCrossRef Dela Cruz JS, Huang TH, Penichet ML, Morrison SL (2004) Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4:57–64PubMedCrossRef
8.
go back to reference Demaison C, Fiette L, Blanchetiere V, Schimpl A, Theze J, Froussard P (1998) IL-2 receptor {alpha}-chain expression is independently regulated in primary and secondary lymphoid organs. J Immunol 161:1977–1982PubMed Demaison C, Fiette L, Blanchetiere V, Schimpl A, Theze J, Froussard P (1998) IL-2 receptor {alpha}-chain expression is independently regulated in primary and secondary lymphoid organs. J Immunol 161:1977–1982PubMed
9.
go back to reference Depper JM, Leonard WJ, Drogula C, Kronke M, Waldmann TA, Greene WC (1985) Interleukin 2 (IL-2) Augments transcription of the IL-2 receptor gene. PNAS 82:4230–4234PubMedCrossRef Depper JM, Leonard WJ, Drogula C, Kronke M, Waldmann TA, Greene WC (1985) Interleukin 2 (IL-2) Augments transcription of the IL-2 receptor gene. PNAS 82:4230–4234PubMedCrossRef
10.
go back to reference Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357PubMedCrossRef Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357PubMedCrossRef
11.
go back to reference Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841 Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841
12.
go back to reference Hoffmann TK, Nakano K, Elder EM, Dworacki G, Finkelstein SD, Appella E, Whiteside TL, DeLeo AB (2000) Generation of T cells specific for the wild-type sequence p53(264–272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol 165:5938–5944PubMed Hoffmann TK, Nakano K, Elder EM, Dworacki G, Finkelstein SD, Appella E, Whiteside TL, DeLeo AB (2000) Generation of T cells specific for the wild-type sequence p53(264–272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol 165:5938–5944PubMed
13.
go back to reference Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171:5051–5063PubMed Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171:5051–5063PubMed
14.
go back to reference Johnson LA, Heemskerk B, Powell DJ Jr, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177:6548–6559PubMed Johnson LA, Heemskerk B, Powell DJ Jr, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177:6548–6559PubMed
15.
go back to reference Lavergne E, Combadiere B, Bonduelle O, Iga M, Gao JL, Maho M, Boissonnas A, Murphy PM, Debre P, Combadiere C (2003) Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res 63:7468–7474PubMed Lavergne E, Combadiere B, Bonduelle O, Iga M, Gao JL, Maho M, Boissonnas A, Murphy PM, Debre P, Combadiere C (2003) Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res 63:7468–7474PubMed
16.
17.
go back to reference Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715PubMed Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715PubMed
18.
go back to reference Lustgarten J, Marks J, Sherman LA (1999) Redirecting effector T cells through their IL-2 receptors. J Immunol 162:359–365PubMed Lustgarten J, Marks J, Sherman LA (1999) Redirecting effector T cells through their IL-2 receptors. J Immunol 162:359–365PubMed
19.
go back to reference Melder RJ, Osborn BL, Riccobene T, Kanakaraj P, Wei P, Chen G, Stolow D, Halpern WG, Migone TS, Wang Q, Grzegorzewski KJ, Gallant G (2005) Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother 54:535–547PubMedCrossRef Melder RJ, Osborn BL, Riccobene T, Kanakaraj P, Wei P, Chen G, Stolow D, Halpern WG, Migone TS, Wang Q, Grzegorzewski KJ, Gallant G (2005) Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother 54:535–547PubMedCrossRef
20.
go back to reference Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedCrossRef Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedCrossRef
21.
go back to reference Mosquera LA, Card KF, Price-Schiavi SA, Belmont HJ, Liu B, Builes J, Zhu X, Chavaillaz PA, Lee HI, Jiao JA, Francis JL, Amirkhosravi A, Wong RL, Wong HC (2005) In vitro and in vivo characterization of a novel antibody-like single-chain TCR human IgG1 fusion protein. J Immunol 174:4381–4388PubMed Mosquera LA, Card KF, Price-Schiavi SA, Belmont HJ, Liu B, Builes J, Zhu X, Chavaillaz PA, Lee HI, Jiao JA, Francis JL, Amirkhosravi A, Wong RL, Wong HC (2005) In vitro and in vivo characterization of a novel antibody-like single-chain TCR human IgG1 fusion protein. J Immunol 174:4381–4388PubMed
22.
23.
go back to reference Puri RK, Travis WD, Rosenberg SA (1990) In vivo administration of interferon alpha and interleukin 2 induces proliferation of lymphoid cells in the organs of mice. Cancer Res 50:5543–5550PubMed Puri RK, Travis WD, Rosenberg SA (1990) In vivo administration of interferon alpha and interleukin 2 induces proliferation of lymphoid cells in the organs of mice. Cancer Res 50:5543–5550PubMed
24.
go back to reference Radny P, Caroli UM, Bauer J, Paul T, Schlegel C, Eigentler TK, Weide B, Schwarz M, Garbe C (2003) Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer 89:1620–1626PubMedCrossRef Radny P, Caroli UM, Bauer J, Paul T, Schlegel C, Eigentler TK, Weide B, Schwarz M, Garbe C (2003) Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer 89:1620–1626PubMedCrossRef
25.
go back to reference Robb RJ, Greene WC (1987) Internalization of interleukin 2 is mediated by the beta chain of the high-affinity interleukin 2 receptor. J Exp Med 165:1201–1206PubMedCrossRef Robb RJ, Greene WC (1987) Internalization of interleukin 2 is mediated by the beta chain of the high-affinity interleukin 2 receptor. J Exp Med 165:1201–1206PubMedCrossRef
26.
go back to reference Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897PubMedCrossRef Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897PubMedCrossRef
27.
go back to reference Running Deer J, Allison DS (2004) High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Biotechnol Prog 20:880–889PubMedCrossRef Running Deer J, Allison DS (2004) High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Biotechnol Prog 20:880–889PubMedCrossRef
28.
go back to reference Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219PubMedCrossRef Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219PubMedCrossRef
29.
go back to reference Tarhini AA, Agarwala SS (2005) Interleukin-2 for the treatment of melanoma. Curr Opin Investig Drugs 6:1234–1239PubMed Tarhini AA, Agarwala SS (2005) Interleukin-2 for the treatment of melanoma. Curr Opin Investig Drugs 6:1234–1239PubMed
30.
go back to reference Toomey JA, Gays F, Foster D, Brooks CG (2003) Cytokine requirements for the growth and development of mouse NK cells in vitro. J Leukoc Biol 74:233–242PubMedCrossRef Toomey JA, Gays F, Foster D, Brooks CG (2003) Cytokine requirements for the growth and development of mouse NK cells in vitro. J Leukoc Biol 74:233–242PubMedCrossRef
31.
go back to reference Voss SD, Robb RJ, Weil-Hillman G, Hank JA, Sugamura K, Tsudo M, Sondel PM (1990) Increased expression of the interleukin 2 (IL-2) receptor beta chain (p70) on CD56+ natural killer cells after in vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate affinity IL-2 binding. J Exp Med 172:1101–1114PubMedCrossRef Voss SD, Robb RJ, Weil-Hillman G, Hank JA, Sugamura K, Tsudo M, Sondel PM (1990) Increased expression of the interleukin 2 (IL-2) receptor beta chain (p70) on CD56+ natural killer cells after in vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate affinity IL-2 binding. J Exp Med 172:1101–1114PubMedCrossRef
32.
go back to reference Xiang R, Lode HN, Dolman CS, Dreier T, Varki NM, Qian X, Lo KM, Lan Y, Super M, Gillies SD, Reisfeld RA (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res 57:4948–4955PubMed Xiang R, Lode HN, Dolman CS, Dreier T, Varki NM, Qian X, Lo KM, Lan Y, Super M, Gillies SD, Reisfeld RA (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res 57:4948–4955PubMed
33.
go back to reference Xu X, Clarke P, Szalai G, Shively JE, Williams LE, Shyr Y, Shi E, Primus FJ (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res 60:4475–4484PubMed Xu X, Clarke P, Szalai G, Shively JE, Williams LE, Shyr Y, Shi E, Primus FJ (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res 60:4475–4484PubMed
34.
go back to reference Yu YR, Fong AM, Combadiere C, Gao JL, Murphy PM, Patel DD (2007) Defective antitumor responses in CX3CR1-deficient mice. Int J Cancer 121:316–322PubMedCrossRef Yu YR, Fong AM, Combadiere C, Gao JL, Murphy PM, Patel DD (2007) Defective antitumor responses in CX3CR1-deficient mice. Int J Cancer 121:316–322PubMedCrossRef
35.
go back to reference Zhai Y, Yang JC, Kawakami Y, Spiess P, Wadsworth SC, Cardoza LM, Couture LA, Smith AE, Rosenberg SA (1996) Antigen-specific tumor vaccines. Development and characterization of recombinant adenoviruses encoding MART1 or gp100 for cancer therapy. J Immunol 156:700–710PubMed Zhai Y, Yang JC, Kawakami Y, Spiess P, Wadsworth SC, Cardoza LM, Couture LA, Smith AE, Rosenberg SA (1996) Antigen-specific tumor vaccines. Development and characterization of recombinant adenoviruses encoding MART1 or gp100 for cancer therapy. J Immunol 156:700–710PubMed
36.
go back to reference Zhu X, Belmont HJ, Price-Schiavi S, Liu B, Lee HI, Fernandez M, Wong RL, Builes J, Rhode PR, Wong HC (2006) Visualization of p53(264–272)/HLA-A*0201 complexes naturally presented on tumor cell surface by a multimeric soluble single-chain T cell receptor. J Immunol 176:3223–3232PubMed Zhu X, Belmont HJ, Price-Schiavi S, Liu B, Lee HI, Fernandez M, Wong RL, Builes J, Rhode PR, Wong HC (2006) Visualization of p53(264–272)/HLA-A*0201 complexes naturally presented on tumor cell surface by a multimeric soluble single-chain T cell receptor. J Immunol 176:3223–3232PubMed
Metadata
Title
Targeting activity of a TCR/IL-2 fusion protein against established tumors
Authors
Jinghai Wen
Xiaoyun Zhu
Bai Liu
Lijing You
Lin Kong
Hyung-il Lee
Kai-ping Han
Jeffrey L. Wong
Peter R. Rhode
Hing C. Wong
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 12/2008
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-008-0504-7

Other articles of this Issue 12/2008

Cancer Immunology, Immunotherapy 12/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine