Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2022

21-03-2022 | Original Article

Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning

Authors: Zhenxing Huang, Yaping Wu, Fangfang Fu, Nan Meng, Fengyun Gu, Qi Wu, Yun Zhou, Yongfeng Yang, Xin Liu, Hairong Zheng, Dong Liang, Meiyun Wang, Zhanli Hu

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2022

Login to get access

Abstract

Purpose

Total-body dynamic positron emission tomography/computed tomography (PET/CT) provides much sensitivity for clinical imaging and research, bringing new opportunities and challenges regarding the generation of total-body parametric images. This study investigated parametric \(K_i\) images directly generated from static PET images without an image-derived input function on a 2-m total-body PET/CT scanner (uEXPLORER) using a deep learning model to significantly reduce the dynamic scanning time and improve patient comfort.

Methods

\(^{18}\)F-Fluorodeoxyglucose (\(^{18}\)F-FDG) 2-m total-body PET/CT image pairs were acquired for 200 patients (scanned once) with two protocols: one parametric PET image (60 min, 0\(\sim\)60 min) and one static PET image (10 min, range of 50\(\sim\)60 min). A deep learning model was implemented to predict parametric \(K_i\) images from the static PET images. Evaluation metrics, including the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and normalized mean square error (NMSE), were calculated for a 10-fold cross-validation assessment. Moreover, image quality was assessed by two nuclear medicine physicians in terms of clinical readings.

Results

The synthetic parametric PET images were qualitatively and quantitatively consistent with the reference images. In particular, the global mean SSIM between the synthetic and reference parametric \(K_i\) images exceeded 0.9 across all test patients. On the other hand, the overall subjective quality of the synthetic parametric PET images was 4.00 ± 0.45 (the highest possible rating is 5) according to the two expert nuclear medicine physicians.

Conclusion

The findings illustrated the feasibility of the proposed technique and its potential to reduce the required scanning duration for 2-m total-body dynamic PET/CT systems. Moreover, this study explored the potential of direct parametric image generation with uEXPLORER. Deep learning technologies may output high-quality synthetic parametric images, and the validation of clinical applications and the interpretability of network models still need further research in future works.
Literature
1.
go back to reference Lammertsma AA. Forward to the past: the case for quantitative pet imaging. J Nucl Med. 2017;58(7):1019–24. Lammertsma AA. Forward to the past: the case for quantitative pet imaging. J Nucl Med. 2017;58(7):1019–24.
2.
go back to reference Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of pet data in oncology: review of current methods and trends for the future. Mol Imaging Biol. 2012;14(2):131–46. Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of pet data in oncology: review of current methods and trends for the future. Mol Imaging Biol. 2012;14(2):131–46.
3.
go back to reference Wang Y, Li E, Cherry SR, Wang G. Total-body pet kinetic modeling and potential opportunities using deep learning. PET Clin. 2021;16(4):613–25. Wang Y, Li E, Cherry SR, Wang G. Total-body pet kinetic modeling and potential opportunities using deep learning. PET Clin. 2021;16(4):613–25.
4.
go back to reference Collij LE, Konijnenberg E, Reimand J, Ten Kate M, Den Braber A, Alves IL, Zwan M, Yaqub M, van Assema DM, Wink AM, et al. Assessing amyloid pathology in cognitively normal subjects using 18f-flutemetamol pet: comparing visual reads and quantitative methods. J Nucl Med. 2019;60(4):541–7. Collij LE, Konijnenberg E, Reimand J, Ten Kate M, Den Braber A, Alves IL, Zwan M, Yaqub M, van Assema DM, Wink AM, et al. Assessing amyloid pathology in cognitively normal subjects using 18f-flutemetamol pet: comparing visual reads and quantitative methods. J Nucl Med. 2019;60(4):541–7.
5.
go back to reference Peretti DE, Vállez García D, Reesink FE, van der Goot T, De Deyn PP, de Jong BM, Dierckx RA, Boellaard R. Relative cerebral flow from dynamic pib scans as an alternative for fdg scans in alzheimer’s disease pet studies. PloS ONE. 2019;14(1):e0211000. Peretti DE, Vállez García D, Reesink FE, van der Goot T, De Deyn PP, de Jong BM, Dierckx RA, Boellaard R. Relative cerebral flow from dynamic pib scans as an alternative for fdg scans in alzheimer’s disease pet studies. PloS ONE. 2019;14(1):e0211000.
6.
go back to reference Leahy R, Boellaard R, Zaidi H. Whole-body parametric pet imaging will replace conventional image-derived pet metrics in clinical oncology. Med Phys. 2018;45(12):5355–8. Leahy R, Boellaard R, Zaidi H. Whole-body parametric pet imaging will replace conventional image-derived pet metrics in clinical oncology. Med Phys. 2018;45(12):5355–8.
7.
go back to reference Zhuang M, Karakatsanis NA, Dierckx RA, Zaidi H. Quantitative analysis of heterogeneous [18 f] fdg static (suv) vs. patlak (ki) whole-body pet imaging using different segmentation methods: a simulation study. Mol Imaging Biol. 2019;21(2):317–27. Zhuang M, Karakatsanis NA, Dierckx RA, Zaidi H. Quantitative analysis of heterogeneous [18 f] fdg static (suv) vs. patlak (ki) whole-body pet imaging using different segmentation methods: a simulation study. Mol Imaging Biol. 2019;21(2):317–27.
8.
go back to reference Fahrni G, Karakatsanis NA, Di Domenicantonio G, Garibotto V, Zaidi H. Does whole-body patlak 18 f-fdg pet imaging improve lesion detectability in clinical oncology? Eur Radiol. 2019;29(9):4812–21. Fahrni G, Karakatsanis NA, Di Domenicantonio G, Garibotto V, Zaidi H. Does whole-body patlak 18 f-fdg pet imaging improve lesion detectability in clinical oncology? Eur Radiol. 2019;29(9):4812–21.
9.
go back to reference Chen Y, Li L, Yu X, Wang J, Wang Y, Huang G, Liu J. Is dynamic total-body pet imaging feasible in the clinical daily practice? 2021. Chen Y, Li L, Yu X, Wang J, Wang Y, Huang G, Liu J. Is dynamic total-body pet imaging feasible in the clinical daily practice? 2021.
10.
go back to reference Zaker N, Kotasidis F, Garibotto V, Zaidi H. Assessment of lesion detectability in dynamic whole-body pet imaging using compartmental and patlak parametric mapping. Clin Nucl Med. 2020;45(5):e221–31. Zaker N, Kotasidis F, Garibotto V, Zaidi H. Assessment of lesion detectability in dynamic whole-body pet imaging using compartmental and patlak parametric mapping. Clin Nucl Med. 2020;45(5):e221–31.
11.
go back to reference Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, Ding Y, Lv Y, Dong Y, Deng Z, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91. Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, Ding Y, Lv Y, Dong Y, Deng Z, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.
12.
go back to reference Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, Li X, Shi H. Kinetic metrics of 18 f-fdg in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;1–10. Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, Li X, Shi H. Kinetic metrics of 18 f-fdg in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;1–10.
13.
go back to reference Lan X, Fan K, Li K, Cai W. Dynamic pet imaging with ultra-low-activity of 18 f-fdg: unleashing the potential of total-body pet. 2021. Lan X, Fan K, Li K, Cai W. Dynamic pet imaging with ultra-low-activity of 18 f-fdg: unleashing the potential of total-body pet. 2021.
14.
go back to reference Zhang X, Cherry SR, Xie Z, Shi H, Badawi RD, Qi J. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc Natl Acad Sci. 2020;117(5):2265–7. Zhang X, Cherry SR, Xie Z, Shi H, Badawi RD, Qi J. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc Natl Acad Sci. 2020;117(5):2265–7.
15.
go back to reference Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, Hu P, Mao W, Shi H. Total-body pet/ct using half-dose fdg and compared with conventional pet/ct using full-dose fdg in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75. Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, Hu P, Mao W, Shi H. Total-body pet/ct using half-dose fdg and compared with conventional pet/ct using full-dose fdg in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75.
16.
go back to reference Hu J, Panin V, Smith AM, Spottiswoode B, Shah V, von Gall CC, Baker M, Howe W, Kehren F, Casey M, et al. Design and implementation of automated clinical whole body parametric pet with continuous bed motion. IEEE Trans Radiat Plasma Med Sci. 2020;4(6):696–707. Hu J, Panin V, Smith AM, Spottiswoode B, Shah V, von Gall CC, Baker M, Howe W, Kehren F, Casey M, et al. Design and implementation of automated clinical whole body parametric pet with continuous bed motion. IEEE Trans Radiat Plasma Med Sci. 2020;4(6):696–707.
17.
go back to reference Wu J, Liu H, Ye Q, Gallezot J-D, Naganawa M, Miao T, Lu Y, Chen M-K, Esserman DA, Kyriakides TC, et al. Generation of parametric ki images for fdg pet using two 5-min scans. Med Phys. 2021. Wu J, Liu H, Ye Q, Gallezot J-D, Naganawa M, Miao T, Lu Y, Chen M-K, Esserman DA, Kyriakides TC, et al. Generation of parametric ki images for fdg pet using two 5-min scans. Med Phys. 2021.
18.
go back to reference Feng T, Wu Y, Zhao Y, Xu T, Fu F, Huang Z, Meng N, Li H, Shao F, Wang M. Whole-body parametric imaging of fdg pet using uexplorer with reduced scan time. J Nucl Med. 2021. Feng T, Wu Y, Zhao Y, Xu T, Fu F, Huang Z, Meng N, Li H, Shao F, Wang M. Whole-body parametric imaging of fdg pet using uexplorer with reduced scan time. J Nucl Med. 2021.
19.
go back to reference Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;1–10. Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;1–10.
20.
go back to reference Chen KT, Schürer M, Ouyang J, Koran MEI, Davidzon G, Mormino E, Tiepolt S, Hoffmann K-T, Sabri O, Zaharchuk G, et al. Generalization of deep learning models for ultra-low-count amyloid pet/mri using transfer learning. Eur J Nucl Med Mol Imaging. 2020;47(13):2998–3007. Chen KT, Schürer M, Ouyang J, Koran MEI, Davidzon G, Mormino E, Tiepolt S, Hoffmann K-T, Sabri O, Zaharchuk G, et al. Generalization of deep learning models for ultra-low-count amyloid pet/mri using transfer learning. Eur J Nucl Med Mol Imaging. 2020;47(13):2998–3007.
21.
go back to reference Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, et al. Pet image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging. 2019;46(13):2780–9. Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, et al. Pet image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging. 2019;46(13):2780–9.
22.
go back to reference Huang Z, Liu X, Wang R, Chen Z, Yang Y, Liu X, Zheng H, Liang D, Hu Z. Learning a deep cnn denoising approach using anatomical prior information implemented with attention mechanism for low-dose ct imaging on clinical patient data from multiple anatomical sites. IEEE J Biomed Health Inform. 2021;25(9):3416–27. Huang Z, Liu X, Wang R, Chen Z, Yang Y, Liu X, Zheng H, Liang D, Hu Z. Learning a deep cnn denoising approach using anatomical prior information implemented with attention mechanism for low-dose ct imaging on clinical patient data from multiple anatomical sites. IEEE J Biomed Health Inform. 2021;25(9):3416–27.
23.
go back to reference Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh M, Holley D, Gandhi H, Halbert K, Boumis A, Kennedy G, et al. True ultra-low-dose amyloid pet/mri enhanced with deep learning for clinical interpretation. Eur J Nucl Med Mol Imaging. 2021;1–10. Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh M, Holley D, Gandhi H, Halbert K, Boumis A, Kennedy G, et al. True ultra-low-dose amyloid pet/mri enhanced with deep learning for clinical interpretation. Eur J Nucl Med Mol Imaging. 2021;1–10.
24.
go back to reference Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body pet/ct imaging. Eur J Nucl Med Mol Imaging. 2021;1–11. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body pet/ct imaging. Eur J Nucl Med Mol Imaging. 2021;1–11.
25.
go back to reference Huang Z, Liu X, Wang R, Chen J, Lu P, Zhang Q, Jiang C, Yang Y, Liu X, Zheng H, et al. Considering anatomical prior information for low-dose ct image enhancement using attribute-augmented wasserstein generative adversarial networks. Neurocomputing. 2021;428:104–15. Huang Z, Liu X, Wang R, Chen J, Lu P, Zhang Q, Jiang C, Yang Y, Liu X, Zheng H, et al. Considering anatomical prior information for low-dose ct image enhancement using attribute-augmented wasserstein generative adversarial networks. Neurocomputing. 2021;428:104–15.
26.
go back to reference Gong K, Catana C, Qi J, Li Q. Pet image reconstruction using deep image prior. IEEE Trans Med Imaging. 2018;38(7):1655–65. Gong K, Catana C, Qi J, Li Q. Pet image reconstruction using deep image prior. IEEE Trans Med Imaging. 2018;38(7):1655–65.
27.
go back to reference Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, El Fakhri G, Qi J, Li Q. Iterative pet image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38(3):675–85. Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, El Fakhri G, Qi J, Li Q. Iterative pet image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38(3):675–85.
28.
go back to reference Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for pet image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2020;5(1):1–25. Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for pet image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2020;5(1):1–25.
29.
go back to reference Gong K, Han PK, Johnson KA, El Fakhri G, Ma C, Li Q. Attenuation correction using deep learning and integrated ute/multi-echo dixon sequence: evaluation in amyloid and tau pet imaging. Eur J Nucl Med Mol Imaging. 2021;48(5):1351–61. Gong K, Han PK, Johnson KA, El Fakhri G, Ma C, Li Q. Attenuation correction using deep learning and integrated ute/multi-echo dixon sequence: evaluation in amyloid and tau pet imaging. Eur J Nucl Med Mol Imaging. 2021;48(5):1351–61.
30.
go back to reference Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion spect. Eur J Nucl Med Mol Imaging. 2020;47(10). Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion spect. Eur J Nucl Med Mol Imaging. 2020;47(10).
31.
go back to reference Huang Z, Chen Z, Chen J, Lu P, Quan G, Du Y, Li C, Gu Z, Yang Y, Liu X, et al. Danet: dose-aware network embedded with dose-level estimation for low-dose ct imaging. Phys Med Biol. 2021;66(1):015005. Huang Z, Chen Z, Chen J, Lu P, Quan G, Du Y, Li C, Gu Z, Yang Y, Liu X, et al. Danet: dose-aware network embedded with dose-level estimation for low-dose ct imaging. Phys Med Biol. 2021;66(1):015005.
32.
go back to reference Zhang Y, Hu D, Zhao Q, Quan G, Liu J, Liu Q, Zhang Y, Coatrieux G, Chen Y, Yu H. Clear: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose ct imaging. IEEE Trans Med Imaging. 2021;40(11):3089–101. Zhang Y, Hu D, Zhao Q, Quan G, Liu J, Liu Q, Zhang Y, Coatrieux G, Chen Y, Yu H. Clear: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose ct imaging. IEEE Trans Med Imaging. 2021;40(11):3089–101.
33.
go back to reference Jiang C, Zhang X, Zhang N, Zhang Q, Zhou C, Yuan J, He Q, Yang Y, Liu X, Zheng H, et al. Synthesizing pet/mr (t1-weighted) images from non-attenuation-corrected pet images. Phys Med Biol. 2021. Jiang C, Zhang X, Zhang N, Zhang Q, Zhou C, Yuan J, He Q, Yang Y, Liu X, Zheng H, et al. Synthesizing pet/mr (t1-weighted) images from non-attenuation-corrected pet images. Phys Med Biol. 2021.
34.
go back to reference Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, Xu Z. Unsupervised mr-to-ct synthesis using structure-constrained cyclegan. IEEE Trans Med Imaging. 2020;39(12):4249–61. Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, Xu Z. Unsupervised mr-to-ct synthesis using structure-constrained cyclegan. IEEE Trans Med Imaging. 2020;39(12):4249–61.
35.
go back to reference Yang H, Lu X, Wang S-H, Lu Z, Yao J, Jiang Y, Qian P. Synthesizing multi-contrast mr images via novel 3d conditional variational auto-encoding gan. Mob Netw Appl. 2021;26(1):415–24. Yang H, Lu X, Wang S-H, Lu Z, Yao J, Jiang Y, Qian P. Synthesizing multi-contrast mr images via novel 3d conditional variational auto-encoding gan. Mob Netw Appl. 2021;26(1):415–24.
36.
go back to reference Hu S, Shen Y, Wang S, Lei B. Brain mr to pet synthesis via bidirectional generative adversarial network. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020. pp 698–707 Hu S, Shen Y, Wang S, Lei B. Brain mr to pet synthesis via bidirectional generative adversarial network. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020. pp 698–707
37.
go back to reference Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, Rahmim A. Generalized whole-body patlak parametric imaging for enhanced quantification in clinical pet. Phys Med Biol. 2015;60(22):8643. Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, Rahmim A. Generalized whole-body patlak parametric imaging for enhanced quantification in clinical pet. Phys Med Biol. 2015;60(22):8643.
38.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4d parametric pet imaging employing nested generalized patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456. Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4d parametric pet imaging employing nested generalized patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456.
39.
go back to reference Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, Chen Y, Shu H, Luo L, Coatrieux J-L. Domain progressive 3d residual convolution network to improve low-dose ct imaging. IEEE Trans Med Imaging. 2019;38(12):2903–13. Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, Chen Y, Shu H, Luo L, Coatrieux J-L. Domain progressive 3d residual convolution network to improve low-dose ct imaging. IEEE Trans Med Imaging. 2019;38(12):2903–13.
Metadata
Title
Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning
Authors
Zhenxing Huang
Yaping Wu
Fangfang Fu
Nan Meng
Fengyun Gu
Qi Wu
Yun Zhou
Yongfeng Yang
Xin Liu
Hairong Zheng
Dong Liang
Meiyun Wang
Zhanli Hu
Publication date
21-03-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05731-x

Other articles of this Issue 8/2022

European Journal of Nuclear Medicine and Molecular Imaging 8/2022 Go to the issue