Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2022

Open Access 01-05-2022 | Alzheimer's Disease | Original Article

Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer’s disease

Authors: Denise Visser, Sander C. J. Verfaillie, Emma E. Wolters, Emma M. Coomans, Tessa Timmers, Hayel Tuncel, Ronald Boellaard, Sandeep S. V. Golla, Albert D. Windhorst, Philip Scheltens, Wiesje M. van der Flier, Bart N. M. van Berckel, Rik Ossenkoppele

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2022

Login to get access

Abstract

Purpose

Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD.

Methods

Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition.

Results

Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤  − 0.48 vs LOAD − 0.18 ≤ stβ ≤  − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16).

Conclusions

Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Koedam EL, et al. Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimers Dis. 2010;19(4):1401–8.CrossRefPubMed Koedam EL, et al. Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimers Dis. 2010;19(4):1401–8.CrossRefPubMed
3.
go back to reference Koedam EL, et al. Early-onset dementia is associated with higher mortality. Dement Geriatr Cogn Disord. 2008;26(2):147–52.CrossRefPubMed Koedam EL, et al. Early-onset dementia is associated with higher mortality. Dement Geriatr Cogn Disord. 2008;26(2):147–52.CrossRefPubMed
4.
go back to reference Koss E, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease: a CERAD analysis. Part XII Neurology. 1996;46(1):136–41.CrossRefPubMed Koss E, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease: a CERAD analysis. Part XII Neurology. 1996;46(1):136–41.CrossRefPubMed
5.
go back to reference Scheltens NM, et al. The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry. 2016;87(3):235–43.CrossRefPubMed Scheltens NM, et al. The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry. 2016;87(3):235–43.CrossRefPubMed
6.
go back to reference Smits LL, et al. Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile. J Alzheimers Dis. 2012;30(1):101–8.CrossRefPubMed Smits LL, et al. Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile. J Alzheimers Dis. 2012;30(1):101–8.CrossRefPubMed
7.
go back to reference Ossenkoppele R, et al. Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain. 2012;135(7):2115–25.CrossRefPubMed Ossenkoppele R, et al. Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain. 2012;135(7):2115–25.CrossRefPubMed
8.
go back to reference Smits LL, et al. Regional atrophy is associated with impairment in distinct cognitive domains in Alzheimer’s disease. Alzheimers Dement. 2014;10:S299–305.CrossRefPubMed Smits LL, et al. Regional atrophy is associated with impairment in distinct cognitive domains in Alzheimer’s disease. Alzheimers Dement. 2014;10:S299–305.CrossRefPubMed
9.
go back to reference Hsu J-L, et al. Posterior atrophy and medial temporal atrophy scores are associated with different symptoms in patients with Alzheimer’s disease and mild cognitive impairment. PLoS ONE. 2015;10(9):e0137121.CrossRefPubMedPubMedCentral Hsu J-L, et al. Posterior atrophy and medial temporal atrophy scores are associated with different symptoms in patients with Alzheimer’s disease and mild cognitive impairment. PLoS ONE. 2015;10(9):e0137121.CrossRefPubMedPubMedCentral
10.
go back to reference Whitwell JL, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. The Lancet Neurology. 2012;11(10):868–77.CrossRefPubMedPubMedCentral Whitwell JL, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. The Lancet Neurology. 2012;11(10):868–77.CrossRefPubMedPubMedCentral
11.
go back to reference Pontecorvo MJ, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):748–63.PubMedPubMedCentral Pontecorvo MJ, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):748–63.PubMedPubMedCentral
12.
13.
go back to reference Johnson KA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.CrossRefPubMed Johnson KA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.CrossRefPubMed
14.
15.
17.
go back to reference Visser D, et al. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2020;47:3165–75.CrossRefPubMedPubMedCentral Visser D, et al. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2020;47:3165–75.CrossRefPubMedPubMedCentral
18.
go back to reference Golla SS, et al. Parametric methods for [18F] flortaucipir PET. J Cereb Blood Flow Metab. 2020;40(2):365–73.CrossRefPubMed Golla SS, et al. Parametric methods for [18F] flortaucipir PET. J Cereb Blood Flow Metab. 2020;40(2):365–73.CrossRefPubMed
19.
go back to reference Peretti, D.E., et al. (2019) Relative cerebral flow from dynamic PIB scans as an alternative for FDG scans in Alzheimer’s disease PET studies. PloS one 14(1) e0211000 Peretti, D.E., et al. (2019) Relative cerebral flow from dynamic PIB scans as an alternative for FDG scans in Alzheimer’s disease PET studies. PloS one 14(1) e0211000
20.
go back to reference Rodriguez-Vieitez E, et al. Comparability of [18F] THK5317 and [11C] PIB blood flow proxy images with [18F] FDG positron emission tomography in Alzheimer’s disease. J Cereb Blood Flow Metab. 2017;37(2):740–9.CrossRefPubMed Rodriguez-Vieitez E, et al. Comparability of [18F] THK5317 and [11C] PIB blood flow proxy images with [18F] FDG positron emission tomography in Alzheimer’s disease. J Cereb Blood Flow Metab. 2017;37(2):740–9.CrossRefPubMed
21.
go back to reference Peretti DE, et al. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer’s disease. EJNMMI Res. 2019;9(1):1–9.CrossRef Peretti DE, et al. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer’s disease. EJNMMI Res. 2019;9(1):1–9.CrossRef
22.
go back to reference Joseph-Mathurin N, et al. Utility of perfusion PET measures to assess neuronal injury in Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;10:669–77.CrossRef Joseph-Mathurin N, et al. Utility of perfusion PET measures to assess neuronal injury in Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;10:669–77.CrossRef
23.
go back to reference Chen YJ, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56(8):1199–205.CrossRefPubMed Chen YJ, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56(8):1199–205.CrossRefPubMed
24.
go back to reference Ottoy J, et al. 18F-FDG PET, the early phases and the delivery rate of 18F-AV45 PET as proxies of cerebral blood flow in Alzheimer’s disease: Validation against 15O–H2O PET. Alzheimers Dement. 2019;15(9):1172–82.CrossRefPubMed Ottoy J, et al. 18F-FDG PET, the early phases and the delivery rate of 18F-AV45 PET as proxies of cerebral blood flow in Alzheimer’s disease: Validation against 15O–H2O PET. Alzheimers Dement. 2019;15(9):1172–82.CrossRefPubMed
25.
go back to reference Wolters EE, et al. Tau pathology, relative cerebral flow and cognition in dementia with Lewy bodies: Tau imaging. Alzheimers Dement. 2020;16:e041048.CrossRef Wolters EE, et al. Tau pathology, relative cerebral flow and cognition in dementia with Lewy bodies: Tau imaging. Alzheimers Dement. 2020;16:e041048.CrossRef
26.
go back to reference Spina, S., et al., 2021 Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain, Spina, S., et al., 2021 Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain,
27.
go back to reference McKhann GM, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.CrossRefPubMedPubMedCentral McKhann GM, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.CrossRefPubMedPubMedCentral
28.
go back to reference Albert MS, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Focus. 2013;11(1):96–106.CrossRef Albert MS, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Focus. 2013;11(1):96–106.CrossRef
29.
go back to reference van der Flier WM, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis. 2014;41(1):313–27.CrossRefPubMed van der Flier WM, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis. 2014;41(1):313–27.CrossRefPubMed
31.
go back to reference Ossenkoppele R, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain. 2015;138(9):2732–49.CrossRefPubMedPubMedCentral Ossenkoppele R, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain. 2015;138(9):2732–49.CrossRefPubMedPubMedCentral
32.
go back to reference Tijms BM, et al. Unbiased approach to counteract upward drift in cerebrospinal fluid amyloid-β 1–42 analysis results. Clin Chem. 2018;64(3):576–85.CrossRefPubMed Tijms BM, et al. Unbiased approach to counteract upward drift in cerebrospinal fluid amyloid-β 1–42 analysis results. Clin Chem. 2018;64(3):576–85.CrossRefPubMed
33.
go back to reference Duits FH, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement. 2014;10(6):713–23.CrossRefPubMed Duits FH, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement. 2014;10(6):713–23.CrossRefPubMed
36.
go back to reference Golla SS, et al. Quantification of tau load using [18 F] AV1451 PET. Mol Imag Biol. 2017;19(6):963–71.CrossRef Golla SS, et al. Quantification of tau load using [18 F] AV1451 PET. Mol Imag Biol. 2017;19(6):963–71.CrossRef
37.
go back to reference Rask, T., et al., 2004 PVElab: software for correction of functional images for partial volume errors. Neuroimage, 22 Rask, T., et al., 2004 PVElab: software for correction of functional images for partial volume errors. Neuroimage, 22
38.
go back to reference Golla SS, et al. Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising. EJNMMI Res. 2017;7(1):1–12.CrossRef Golla SS, et al. Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising. EJNMMI Res. 2017;7(1):1–12.CrossRef
39.
go back to reference Cysouw M, et al. Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics. EJNMMI Res. 2019;9(1):1–11.CrossRef Cysouw M, et al. Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics. EJNMMI Res. 2019;9(1):1–11.CrossRef
40.
go back to reference Groot C, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56.CrossRefPubMed Groot C, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56.CrossRefPubMed
41.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed
42.
go back to reference Rubin, D.B., 2004 Multiple imputation for nonresponse in surveys. Vol. 81 John Wiley & Sons. Rubin, D.B., 2004 Multiple imputation for nonresponse in surveys. Vol. 81 John Wiley & Sons.
43.
go back to reference Von Hippel PT. How many imputations do you need? A two-stage calculation using a quadratic rule. Sociological Methods & Research. 2020;49(3):699–718.CrossRef Von Hippel PT. How many imputations do you need? A two-stage calculation using a quadratic rule. Sociological Methods & Research. 2020;49(3):699–718.CrossRef
44.
go back to reference Selvin, S., 2004 Statistical analysis of epidemiologic data. Oxford University Press. Selvin, S., 2004 Statistical analysis of epidemiologic data. Oxford University Press.
45.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
46.
go back to reference Lehmann M, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013;136(3):844–58.CrossRefPubMedPubMedCentral Lehmann M, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013;136(3):844–58.CrossRefPubMedPubMedCentral
47.
go back to reference Chan D, et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. The Lancet. 2003;362(9390):1121–2.CrossRef Chan D, et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. The Lancet. 2003;362(9390):1121–2.CrossRef
48.
go back to reference Möller C, et al. Different patterns of gray matter atrophy in early-and late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2014–22.CrossRefPubMed Möller C, et al. Different patterns of gray matter atrophy in early-and late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2014–22.CrossRefPubMed
49.
go back to reference Lehmann M, et al. Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiol Aging. 2015;36(10):2678–86.CrossRefPubMedPubMedCentral Lehmann M, et al. Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiol Aging. 2015;36(10):2678–86.CrossRefPubMedPubMedCentral
50.
go back to reference De Waal H, et al. EEG abnormalities in early and late onset Alzheimer’s disease: understanding heterogeneity. J Neurol Neurosurg Psychiatry. 2011;82(1):67–71.CrossRefPubMed De Waal H, et al. EEG abnormalities in early and late onset Alzheimer’s disease: understanding heterogeneity. J Neurol Neurosurg Psychiatry. 2011;82(1):67–71.CrossRefPubMed
51.
go back to reference De Waal, H., et al., Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiology of aging, 2012. 33(5): p. 1008. e25–1008. e31. De Waal, H., et al., Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiology of aging, 2012. 33(5): p. 1008. e25–1008. e31.
52.
go back to reference Iaccarino L, et al. Spatial relationships between molecular pathology and neurodegeneration in the Alzheimer’s disease continuum. Cereb Cortex. 2021;31(1):1–14.CrossRefPubMed Iaccarino L, et al. Spatial relationships between molecular pathology and neurodegeneration in the Alzheimer’s disease continuum. Cereb Cortex. 2021;31(1):1–14.CrossRefPubMed
53.
go back to reference Schöll M, et al. Distinct 18F-AV-1451 tau PET retention patterns in early-and late-onset Alzheimer’s disease. Brain. 2017;140(9):2286–94.CrossRefPubMed Schöll M, et al. Distinct 18F-AV-1451 tau PET retention patterns in early-and late-onset Alzheimer’s disease. Brain. 2017;140(9):2286–94.CrossRefPubMed
55.
go back to reference Ossenkoppele, R., et al., 2021 Accuracy of Tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA neurology Ossenkoppele, R., et al., 2021 Accuracy of Tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA neurology
56.
go back to reference Gerritsen AA, et al. Prevalence of comorbidity in patients with young-onset Alzheimer disease compared with late-onset: a comparative cohort study. J Am Med Dir Assoc. 2016;17(4):318–23.CrossRefPubMed Gerritsen AA, et al. Prevalence of comorbidity in patients with young-onset Alzheimer disease compared with late-onset: a comparative cohort study. J Am Med Dir Assoc. 2016;17(4):318–23.CrossRefPubMed
57.
go back to reference Ortner M, et al. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer’s disease. Biol Psychiat. 2015;77(8):704–10.CrossRefPubMed Ortner M, et al. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer’s disease. Biol Psychiat. 2015;77(8):704–10.CrossRefPubMed
58.
go back to reference Igelström KM, Graziano MS. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83.CrossRefPubMed Igelström KM, Graziano MS. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83.CrossRefPubMed
59.
go back to reference Engels M, et al. Alzheimer’s disease: the state of the art in resting-state magnetoencephalography. Clin Neurophysiol. 2017;128(8):1426–37.CrossRefPubMed Engels M, et al. Alzheimer’s disease: the state of the art in resting-state magnetoencephalography. Clin Neurophysiol. 2017;128(8):1426–37.CrossRefPubMed
60.
go back to reference Brier MR, et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci. 2012;32(26):8890–9.CrossRefPubMedPubMedCentral Brier MR, et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci. 2012;32(26):8890–9.CrossRefPubMedPubMedCentral
62.
go back to reference Rabinovici GD, et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133(2):512–28.CrossRefPubMedPubMedCentral Rabinovici GD, et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133(2):512–28.CrossRefPubMedPubMedCentral
63.
go back to reference Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011;55(2):468–78.CrossRefPubMed Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011;55(2):468–78.CrossRefPubMed
64.
go back to reference Cho H, et al. Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer’s disease. Neurobiol Aging. 2017;53:103–11.CrossRefPubMed Cho H, et al. Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer’s disease. Neurobiol Aging. 2017;53:103–11.CrossRefPubMed
65.
go back to reference Vogel, J.W., et al., Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nature Medicine, 2021: p. 1–11. Vogel, J.W., et al., Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nature Medicine, 2021: p. 1–11.
66.
go back to reference Smith R, et al. Posterior accumulation of tau and concordant hypometabolism in an early-onset Alzheimer’s disease patient with presenilin-1 mutation. J Alzheimers Dis. 2016;51(2):339–43.CrossRefPubMed Smith R, et al. Posterior accumulation of tau and concordant hypometabolism in an early-onset Alzheimer’s disease patient with presenilin-1 mutation. J Alzheimers Dis. 2016;51(2):339–43.CrossRefPubMed
67.
go back to reference Gordon BA, et al. Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers. Brain. 2019;142(4):1063–76.CrossRefPubMedPubMedCentral Gordon BA, et al. Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers. Brain. 2019;142(4):1063–76.CrossRefPubMedPubMedCentral
68.
go back to reference van der Flier WM, et al. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE ɛ4 allele. The Lancet Neurology. 2011;10(3):280–8.CrossRefPubMed van der Flier WM, et al. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE ɛ4 allele. The Lancet Neurology. 2011;10(3):280–8.CrossRefPubMed
69.
go back to reference Ten Kate M, et al. Impact of APOE-ɛ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. Neurobiol Aging. 2016;38:14–20.CrossRefPubMed Ten Kate M, et al. Impact of APOE-ɛ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. Neurobiol Aging. 2016;38:14–20.CrossRefPubMed
70.
go back to reference Mattsson N, et al. Greater tau load and reduced cortical thickness in APOE ε4-negative Alzheimer’s disease: a cohort study. Alzheimer’s research & therapy. 2018;10(1):1–12.CrossRef Mattsson N, et al. Greater tau load and reduced cortical thickness in APOE ε4-negative Alzheimer’s disease: a cohort study. Alzheimer’s research & therapy. 2018;10(1):1–12.CrossRef
Metadata
Title
Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer’s disease
Authors
Denise Visser
Sander C. J. Verfaillie
Emma E. Wolters
Emma M. Coomans
Tessa Timmers
Hayel Tuncel
Ronald Boellaard
Sandeep S. V. Golla
Albert D. Windhorst
Philip Scheltens
Wiesje M. van der Flier
Bart N. M. van Berckel
Rik Ossenkoppele
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05669-6

Other articles of this Issue 6/2022

European Journal of Nuclear Medicine and Molecular Imaging 6/2022 Go to the issue