Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2020

01-07-2020 | Neurotomy | Original Article

Reliable quantification of myocardial sympathetic innervation and regional denervation using [11C]meta-hydroxyephedrine PET

Authors: Kai Yi Wu, Jason G.E. Zelt, Tong Wang, Vincent Dinculescu, Robert Miner, Catherine Lapierre, Nicole Kaps, Aaryn Lavallee, Jennifer M. Renaud, James Thackeray, Lisa M. Mielniczuk, Shin-Yee Chen, Ian G. Burwash, Jean N. DaSilva, Rob S.B. Beanlands, Robert A. deKemp

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2020

Login to get access

Abstract

Purpose

Cardiac sympathetic nervous system (SNS) dysfunction is associated with poor prognosis in chronic heart failure patients. This study characterized the reproducibility and repeatability of [11C]meta-hydroxyephedrine (HED) positron emission tomography (PET) quantification of cardiac SNS innervation, regional denervation, and myocardial blood flow (MBF).

Methods

Dynamic HED PET-CT scans were performed 47 ± 22 days apart in 20 patients with stable heart failure and reduced ejection fraction. Three observers, blinded to clinical data, used FlowQuant® to evaluate the test-retest repeatability and inter- and intra-observer reproducibility of HED tracer uptake and clearance rates to measure global (LV-mean) retention index (RI), volume of distribution (VT), and MBF. Values were also compared with and without regional partial-volume correction. Regional denervation was quantified as %LV defect size of values < 75% of the LV-maximum. Test-retest repeatability and observer reproducibility were evaluated using intra-class-correlation (ICC) and Bland-Altman coefficient of repeatability (NPC).

Results

Intra- and inter-observer correlations of both VT and RI were excellent (ICC = 0.93–0.99). Observer reproducibility (NPC = 3–13%) was lower than test-retest repeatability (NPC = 12–61%). Both regional (%LV defect size) and global (LV-mean) measures of sympathetic innervation were more repeatable using the simple RI model compared to VT (NPC = 12% vs. 19% and 30% vs. 54%). Using either model, quantification of regional denervation (defect size) was consistently more reliable than the global LV-mean values of RI or VT. Regional partial-volume correction degraded repeatability of both the global and regional VT measures by 2–12%. Test-retest repeatability of MBF estimation was relatively poor (NPC = 30–61%) compared with the RI.

Conclusions

Quantitative measures of global and regional SNS innervation were most repeatable using the simple RI method of analysis compared with the more complex VT. Observer variability was significantly lower than the test-retest repeatability using a highly automated analysis program. These results support the use of the simple RI method for reliable analysis of HED PET images in clinical research studies for future evaluation of new therapies and for risk stratification in patients with heart failure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zelt JGE, DeKemp RA, Rotstein BH, Nair GM, Narula J, Ahmadi A, et al. Nuclear imaging of the cardiac sympathetic nervous system: a disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2019. Zelt JGE, DeKemp RA, Rotstein BH, Nair GM, Narula J, Ahmadi A, et al. Nuclear imaging of the cardiac sympathetic nervous system: a disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2019.
2.
go back to reference Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.PubMedCrossRef Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.PubMedCrossRef
3.
go back to reference Fallavollita JA, Luisi AJ, Michalek SM, Valverde AM, Haka MS, Hutson AD, et al. Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods. Contemp Clin Trials. 2006;27:374–88.PubMedCrossRef Fallavollita JA, Luisi AJ, Michalek SM, Valverde AM, Haka MS, Hutson AD, et al. Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods. Contemp Clin Trials. 2006;27:374–88.PubMedCrossRef
4.
go back to reference Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11:603–16.PubMedCrossRef Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11:603–16.PubMedCrossRef
5.
go back to reference Boschi S, Lodi F, Boschi L, Nanni C, Chondrogiannis S, Colletti PM, et al. 11C-meta-hydroxyephedrine: a promising PET radiopharmaceutical for imaging the sympathetic nervous system. Clin Nucl Med. 2015;40:e96–103.PubMedCrossRef Boschi S, Lodi F, Boschi L, Nanni C, Chondrogiannis S, Colletti PM, et al. 11C-meta-hydroxyephedrine: a promising PET radiopharmaceutical for imaging the sympathetic nervous system. Clin Nucl Med. 2015;40:e96–103.PubMedCrossRef
6.
go back to reference Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.PubMedCrossRef Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.PubMedCrossRef
7.
go back to reference Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.PubMedCrossRef Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.PubMedCrossRef
8.
go back to reference Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9.PubMedCrossRef Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9.PubMedCrossRef
9.
go back to reference Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56:457–63.PubMedCrossRef Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56:457–63.PubMedCrossRef
10.
go back to reference Hiroshima Y, Manabe O, Naya M, Tomiyama Y, Magota K, Obara M, et al. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET. J Nucl Cardiol. 2017:1–8. Hiroshima Y, Manabe O, Naya M, Tomiyama Y, Magota K, Obara M, et al. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET. J Nucl Cardiol. 2017:1–8.
11.
go back to reference Harms HJ, Lubberink M, de Haan S, Knaapen P, Huisman MC, Schuit RC, et al. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow–innervation mismatches in patients with ischemic cardiomyopathy. J Nucl Med. 2015;56:1706–11.PubMedCrossRef Harms HJ, Lubberink M, de Haan S, Knaapen P, Huisman MC, Schuit RC, et al. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow–innervation mismatches in patients with ischemic cardiomyopathy. J Nucl Med. 2015;56:1706–11.PubMedCrossRef
12.
go back to reference Münch G, Nguyen NTB, Nekolla S, Ziegler S, Muzik O, Chakraborty P, et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516–23.PubMedCrossRef Münch G, Nguyen NTB, Nekolla S, Ziegler S, Muzik O, Chakraborty P, et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516–23.PubMedCrossRef
13.
go back to reference Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung Y-W. Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med. 2006;47:1490–6.PubMed Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung Y-W. Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med. 2006;47:1490–6.PubMed
14.
go back to reference DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287–93.PubMed DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287–93.PubMed
15.
go back to reference Fricke E, Eckert S, Dongas A, Fricke H, Preuss R, Lindner O, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: follow-up after 1 year with neurostimulation. J Nucl Med. 2008;49:1458–64.PubMedCrossRef Fricke E, Eckert S, Dongas A, Fricke H, Preuss R, Lindner O, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: follow-up after 1 year with neurostimulation. J Nucl Med. 2008;49:1458–64.PubMedCrossRef
16.
go back to reference Harms HJ, de Haan S, Knaapen P, Allaart CP, Rijnierse MT, Schuit RC, et al. Quantification of [11 C]-meta-hydroxyephedrine uptake in human myocardium. EJNMMI Res. 2014;4:52.PubMedPubMedCentralCrossRef Harms HJ, de Haan S, Knaapen P, Allaart CP, Rijnierse MT, Schuit RC, et al. Quantification of [11 C]-meta-hydroxyephedrine uptake in human myocardium. EJNMMI Res. 2014;4:52.PubMedPubMedCentralCrossRef
17.
go back to reference Thackeray JT, Renaud JM, Kordos M, Klein R, Beanlands RSB, DaSilva JN. Test–retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol. 2013;40:676–81.PubMedCrossRef Thackeray JT, Renaud JM, Kordos M, Klein R, Beanlands RSB, DaSilva JN. Test–retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol. 2013;40:676–81.PubMedCrossRef
18.
go back to reference Wang T, Wu KY, Miner RC, Renaud JM, Beanlands RSB. Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging. EJNMMI Res. 2018;8:63.PubMedPubMedCentralCrossRef Wang T, Wu KY, Miner RC, Renaud JM, Beanlands RSB. Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging. EJNMMI Res. 2018;8:63.PubMedPubMedCentralCrossRef
19.
go back to reference Hall AB, Ziadi MC, Leech JA, Chen S-Y, Burwash IG, Renaud J, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation. 2014;130:892–901.PubMedCrossRef Hall AB, Ziadi MC, Leech JA, Chen S-Y, Burwash IG, Renaud J, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation. 2014;130:892–901.PubMedCrossRef
20.
go back to reference Wu KY, Dinculescu V, Renaud JM, Chen S-Y, Burwash IG, Mielniczuk LM, et al. Repeatable and reproducible measurements of myocardial oxidative metabolism, blood flow and external efficiency using 11 C-acetate PET. J Nucl Cardiol. 2018;25(6):1912–25 1–14.PubMedCrossRef Wu KY, Dinculescu V, Renaud JM, Chen S-Y, Burwash IG, Mielniczuk LM, et al. Repeatable and reproducible measurements of myocardial oxidative metabolism, blood flow and external efficiency using 11 C-acetate PET. J Nucl Cardiol. 2018;25(6):1912–25 1–14.PubMedCrossRef
21.
go back to reference Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.PubMed Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.PubMed
22.
go back to reference Yoshinaga K, Burwash IG, Leech JA, Haddad H, Johnson CB, Garrard L, et al. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450–8.PubMedCrossRef Yoshinaga K, Burwash IG, Leech JA, Haddad H, Johnson CB, Garrard L, et al. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450–8.PubMedCrossRef
23.
go back to reference Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS. Intra-and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol. 2010;17:600–16.PubMedCrossRef Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS. Intra-and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol. 2010;17:600–16.PubMedCrossRef
24.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef
25.
go back to reference Sander CY, Mandeville JB, Wey H-Y, Catana C, Hooker JM, Rosen BR. Effects of flow changes on radiotracer binding: simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 2019;39:131–146. Sander CY, Mandeville JB, Wey H-Y, Catana C, Hooker JM, Rosen BR. Effects of flow changes on radiotracer binding: simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 2019;39:131–146.
26.
go back to reference Logan J, Volkow ND, Fowler JS, Wang G-J, Dewey SL, MacGregor R, et al. Effects of blood flow on [11C] raclopride binding in the brain: model simulations and kinetic analysis of PET data. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 1994;14:995–1010. Logan J, Volkow ND, Fowler JS, Wang G-J, Dewey SL, MacGregor R, et al. Effects of blood flow on [11C] raclopride binding in the brain: model simulations and kinetic analysis of PET data. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 1994;14:995–1010.
27.
go back to reference Holthoff VA, Koeppe RA, Frey KA, Paradise AH, Kuhl DE. Differentiation of radioligand delivery and binding in the brain: validation of a two-compartment model for [11C] flumazenil. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 1991;11:745–52.CrossRef Holthoff VA, Koeppe RA, Frey KA, Paradise AH, Kuhl DE. Differentiation of radioligand delivery and binding in the brain: validation of a two-compartment model for [11C] flumazenil. J Cereb Blood Flow Metab. SAGE Publications Sage UK: London, England; 1991;11:745–52.CrossRef
28.
go back to reference Thackeray JT, Beanlands RS, DaSilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med. 2007;48:1733–40.PubMedCrossRef Thackeray JT, Beanlands RS, DaSilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med. 2007;48:1733–40.PubMedCrossRef
29.
go back to reference Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.PubMedCrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.PubMedCrossRef
30.
go back to reference Burwash IG, Forbes AD, Sadahiro M, Verrier ED, Pearlman AS, Thomas R, et al. Echocardiographic volume flow and stenosis severity measures with changing flow rate in aortic stenosis. Am J Physiol Circ Physiol. 1993;265:H1734–43.CrossRef Burwash IG, Forbes AD, Sadahiro M, Verrier ED, Pearlman AS, Thomas R, et al. Echocardiographic volume flow and stenosis severity measures with changing flow rate in aortic stenosis. Am J Physiol Circ Physiol. 1993;265:H1734–43.CrossRef
31.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420.PubMedCrossRef Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420.PubMedCrossRef
32.
33.
go back to reference Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB. Consistent tracer administration profile improves test–retest repeatability of myocardial blood flow quantification with 82 Rb dynamic PET imaging. J Nucl Cardiol. 2016;25(3):929–41 1–13.PubMedCentralCrossRef Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB. Consistent tracer administration profile improves test–retest repeatability of myocardial blood flow quantification with 82 Rb dynamic PET imaging. J Nucl Cardiol. 2016;25(3):929–41 1–13.PubMedCentralCrossRef
34.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47:931–6.CrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47:931–6.CrossRef
35.
go back to reference Nordstokke DW, Zumbo BD. A new nonparametric Levene test for equal variances. Psicológica. 2010;31:401–30. Nordstokke DW, Zumbo BD. A new nonparametric Levene test for equal variances. Psicológica. 2010;31:401–30.
36.
go back to reference Bateman TM, Ananthasubramaniam K, Berman DS, Gerson M, Gropler R, Henzlova M, et al. Reliability of the 123I-mIBG heart/mediastinum ratio: results of a multicenter test–retest reproducibility study. J Nucl Cardiol. 2018;26:1555–65.PubMedCrossRef Bateman TM, Ananthasubramaniam K, Berman DS, Gerson M, Gropler R, Henzlova M, et al. Reliability of the 123I-mIBG heart/mediastinum ratio: results of a multicenter test–retest reproducibility study. J Nucl Cardiol. 2018;26:1555–65.PubMedCrossRef
37.
go back to reference van den Hoff J, Burchert W, Börner A-R, Fricke H, Kühnel G, Meyer GJ, et al. [1-11C] Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.PubMed van den Hoff J, Burchert W, Börner A-R, Fricke H, Kühnel G, Meyer GJ, et al. [1-11C] Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.PubMed
38.
go back to reference Schäfers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res. 1998;82:57–62.PubMedCrossRef Schäfers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res. 1998;82:57–62.PubMedCrossRef
39.
go back to reference Thackeray JT, Beanlands RS, DaSilva JN. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol. 2013;20:845–56.PubMedCrossRef Thackeray JT, Beanlands RS, DaSilva JN. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol. 2013;20:845–56.PubMedCrossRef
40.
go back to reference Thackeray JT, Radziuk J, Harper M-E, Suuronen EJ, Ascah KJ, Beanlands RS, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol. 2011;10:75.PubMedPubMedCentralCrossRef Thackeray JT, Radziuk J, Harper M-E, Suuronen EJ, Ascah KJ, Beanlands RS, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol. 2011;10:75.PubMedPubMedCentralCrossRef
41.
go back to reference Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med. 1992;33:1243–50.PubMed Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med. 1992;33:1243–50.PubMed
42.
go back to reference Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.PubMedCrossRef Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.PubMedCrossRef
43.
go back to reference Fallavollita JA, Dare JD, Carter RL, Baldwa S, Canty JM. Denervated myocardium is preferentially associated with sudden cardiac arrest in ischemic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10:e006446.PubMedPubMedCentralCrossRef Fallavollita JA, Dare JD, Carter RL, Baldwa S, Canty JM. Denervated myocardium is preferentially associated with sudden cardiac arrest in ischemic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10:e006446.PubMedPubMedCentralCrossRef
44.
go back to reference Aikawa T, Naya M, Obara M, Oyama-Manabe N, Manabe O, Magota K, et al. Regional interaction between myocardial sympathetic denervation, contractile dysfunction, and fibrosis in heart failure with preserved ejection fraction: 11C-hydroxyephedrine PET study. Eur J Nucl Med Mol Imaging. 2017;44:1897–905.PubMedCrossRef Aikawa T, Naya M, Obara M, Oyama-Manabe N, Manabe O, Magota K, et al. Regional interaction between myocardial sympathetic denervation, contractile dysfunction, and fibrosis in heart failure with preserved ejection fraction: 11C-hydroxyephedrine PET study. Eur J Nucl Med Mol Imaging. 2017;44:1897–905.PubMedCrossRef
45.
go back to reference Zelt JGE, Mielniczuk LM, Orlandi C, Robinson S, Hadizad T, Walter O, et al. PET imaging of sympathetic innervation with [18F]Flurobenguan vs [11C]mHED in a patient with ischemic cardiomyopathy. J Nucl Cardiol 2018;1–3. Zelt JGE, Mielniczuk LM, Orlandi C, Robinson S, Hadizad T, Walter O, et al. PET imaging of sympathetic innervation with [18F]Flurobenguan vs [11C]mHED in a patient with ischemic cardiomyopathy. J Nucl Cardiol 2018;1–3.
46.
go back to reference Zelt J, Renaud J, Mielniczuk L, Garrard L, Orlandi C, Beanlands R, et al. Tracer kinetics of fluorine-18 LMI1195 compared to carbon-11 hydroxyephedrine for PET imaging of sympathetic innervation. Can J Cardiol. 2018;34:S117–8.CrossRef Zelt J, Renaud J, Mielniczuk L, Garrard L, Orlandi C, Beanlands R, et al. Tracer kinetics of fluorine-18 LMI1195 compared to carbon-11 hydroxyephedrine for PET imaging of sympathetic innervation. Can J Cardiol. 2018;34:S117–8.CrossRef
Metadata
Title
Reliable quantification of myocardial sympathetic innervation and regional denervation using [11C]meta-hydroxyephedrine PET
Authors
Kai Yi Wu
Jason G.E. Zelt
Tong Wang
Vincent Dinculescu
Robert Miner
Catherine Lapierre
Nicole Kaps
Aaryn Lavallee
Jennifer M. Renaud
James Thackeray
Lisa M. Mielniczuk
Shin-Yee Chen
Ian G. Burwash
Jean N. DaSilva
Rob S.B. Beanlands
Robert A. deKemp
Publication date
01-07-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2020
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04629-5

Other articles of this Issue 7/2020

European Journal of Nuclear Medicine and Molecular Imaging 7/2020 Go to the issue