Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2020

01-09-2020 | Positron Emission Tomography | Original Article

Dynamic PET/CT imaging of 18F-(2S, 4R)4-fluoroglutamine in healthy volunteers and oncological patients

Authors: Xiaoxia Xu, Hua Zhu, Fei Liu, Yan Zhang, Jianhua Yang, Lifang Zhang, Qing Xie, Lin Zhu, Nan Li, Hank F. Kung, Zhi Yang

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2020

Login to get access

Abstract

Purpose

The purpose of this study was to compare dynamic 18F-FGln PET/CT images of healthy subjects and cancer patients and explore the best imaging phase for different cancers.

Methods

Thirteen healthy volunteers and 31 cancer patients separately underwent 18F-FGln and 18F-FDG PET/CT scans within 1 week. The distributions of 18F-FGln and 18F-FDG in the whole body and the tumor avidity were analyzed and compared. The tumor maximum standardized uptake values (SUVmax) and tumor-to-nontumor SUV ratio (SUR) of 18F-FGln/PET at different scan phases were compared.

Results

Compared to the healthy subjects, the cancer patients had lower 18F-FGln activity (SUVmean) in most normal organs, especially in the lung, muscle, spleen, and heart (p < 0.05). Additionally, the FGln-avid tumors did not necessarily manifest as FDG-avid and vice versa. Overall, among the 31 primary malignant lesions confirmed by biopsy or postoperative pathological analysis, 29 showed increased radioactive uptake on all 18F-FGln PET/CT imaging phases. The peak of SUVmax in breast and thyroid cancers was within 10 min, while in lung cancers, the plateau of SUVmax was within 30 min to 60 min. The SURs of lung cancer (p = 0.046) and thyroid cancer (p = 0.794) increased from the early-phase to the late-phase acquisition; however, a significant decrease was observed in the breast lesions (p = 0.022).

Conclusions

18F-FGln images may further supplement the diagnostic ability of 18F-FDG in cancer patients and detect metabolic changes in different tumors. Furthermore, the imaging time for 18F-FGln PET/CT needs to be optimized for different cancer types to improve the contrast resolution of tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3:169–80.CrossRef Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3:169–80.CrossRef
2.
go back to reference Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, et al. In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of (18)F-(2S,4R)-4-fluoroglutamine. Radiology. 2018;287:667–75.CrossRef Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, et al. In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of (18)F-(2S,4R)-4-fluoroglutamine. Radiology. 2018;287:667–75.CrossRef
3.
go back to reference Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic imaging of glutamine in cancer. J Nucl Med. 2017;58:533–7.CrossRef Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic imaging of glutamine in cancer. J Nucl Med. 2017;58:533–7.CrossRef
4.
go back to reference Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7:274ra17.CrossRef Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7:274ra17.CrossRef
5.
go back to reference Xu X, Zhu H, Liu F, Zhang Y, Yang J, Zhang L, et al. Imaging brain metastasis patients with 18F-(2S,4R)-4-fluoroglutamine. Clin Nucl Med. 2018;43:e392–e9.CrossRef Xu X, Zhu H, Liu F, Zhang Y, Yang J, Zhang L, et al. Imaging brain metastasis patients with 18F-(2S,4R)-4-fluoroglutamine. Clin Nucl Med. 2018;43:e392–e9.CrossRef
6.
go back to reference Liu F, Xu X, Zhu H, Zhang Y, Yang J, Zhang L, et al. PET imaging of (18)F-(2 S,4 R)4-fluoroglutamine accumulation in breast cancer: from xenografts to patients. Mol Pharm. 2018;15:3448–55.CrossRef Liu F, Xu X, Zhu H, Zhang Y, Yang J, Zhang L, et al. PET imaging of (18)F-(2 S,4 R)4-fluoroglutamine accumulation in breast cancer: from xenografts to patients. Mol Pharm. 2018;15:3448–55.CrossRef
7.
go back to reference Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med. 2011;52:1947–55.CrossRef Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med. 2011;52:1947–55.CrossRef
8.
go back to reference Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med. 2012;53:1616–24.CrossRef Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med. 2012;53:1616–24.CrossRef
9.
go back to reference Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise DR, et al. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc. 2011;133:1122–33.CrossRef Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise DR, et al. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc. 2011;133:1122–33.CrossRef
10.
go back to reference Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, et al. [(18)F](2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res. 2017;77:1476–84.CrossRef Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, et al. [(18)F](2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res. 2017;77:1476–84.CrossRef
11.
go back to reference Zhu H, Liu F, Zhang Y, Yang J, Xu X, Guo X, et al. (2S,4R)-4-[(18)F] Fluoroglutamine as a PET indicator for bone marrow metabolism dysfunctional: from animal experiments to clinical application. Mol Imaging Biol. 2019. Zhu H, Liu F, Zhang Y, Yang J, Xu X, Guo X, et al. (2S,4R)-4-[(18)F] Fluoroglutamine as a PET indicator for bone marrow metabolism dysfunctional: from animal experiments to clinical application. Mol Imaging Biol. 2019.
12.
go back to reference Li X, Rowe SP, Leal JP, Gorin MA, Allaf ME, Ross AE, et al. Semiquantitative parameters in PSMA-targeted PET imaging with (18)F-DCFPyL: variability in normal-organ uptake. J Nucl Med. 2017;58:942–6.CrossRef Li X, Rowe SP, Leal JP, Gorin MA, Allaf ME, Ross AE, et al. Semiquantitative parameters in PSMA-targeted PET imaging with (18)F-DCFPyL: variability in normal-organ uptake. J Nucl Med. 2017;58:942–6.CrossRef
13.
go back to reference Morioka T, Niikura N, Kumaki N, Masuda S, Iwamoto T, Yokoyama K, et al. Comparison of Ki-67 labeling index measurements using digital image analysis and scoring by pathologists. Breast Cancer. 2018;25:768–77.CrossRef Morioka T, Niikura N, Kumaki N, Masuda S, Iwamoto T, Yokoyama K, et al. Comparison of Ki-67 labeling index measurements using digital image analysis and scoring by pathologists. Breast Cancer. 2018;25:768–77.CrossRef
14.
go back to reference Niikura N, Masuda S, Kumaki N, Xiaoyan T, Terada M, Terao M, et al. Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer. 2014;14:323–9.e3.CrossRef Niikura N, Masuda S, Kumaki N, Xiaoyan T, Terada M, Terao M, et al. Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer. 2014;14:323–9.e3.CrossRef
15.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
16.
go back to reference Kessler RM, Seibyl J, Cowan RL, Zald D, Young JS, Ansari MS, et al. Radiation dosimetry of (18)F-FPEB in humans. J Nucl Med. 2014;55:1119–21.CrossRef Kessler RM, Seibyl J, Cowan RL, Zald D, Young JS, Ansari MS, et al. Radiation dosimetry of (18)F-FPEB in humans. J Nucl Med. 2014;55:1119–21.CrossRef
17.
go back to reference Hoglund J, Shirvan A, Antoni G, Gustavsson SA, Langstrom B, Ringheim A, et al. 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med. 2011;52:720–5.CrossRef Hoglund J, Shirvan A, Antoni G, Gustavsson SA, Langstrom B, Ringheim A, et al. 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med. 2011;52:720–5.CrossRef
18.
go back to reference FDA. Tetle 21, Code of Federal Regulations, Part 361: Radioactive Drugs for Certain Research Uses; 1985. FDA. Tetle 21, Code of Federal Regulations, Part 361: Radioactive Drugs for Certain Research Uses; 1985.
19.
go back to reference Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123:3678–84.CrossRef Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123:3678–84.CrossRef
20.
go back to reference Souba WW, Herskowitz K, Plumley DA. Lung glutamine metabolism. JPEN J Parenter Enteral Nutr. 1990;14:68S–70S.CrossRef Souba WW, Herskowitz K, Plumley DA. Lung glutamine metabolism. JPEN J Parenter Enteral Nutr. 1990;14:68S–70S.CrossRef
21.
go back to reference Rajagopalan KN, DeBerardinis RJ. Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med. 2011;52:1005–8.CrossRef Rajagopalan KN, DeBerardinis RJ. Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med. 2011;52:1005–8.CrossRef
22.
go back to reference Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl). 2011;89:229–36.CrossRef Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl). 2011;89:229–36.CrossRef
23.
go back to reference Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging cancer metabolism: underlying biology and emerging strategies. J Nucl Med. 2018;59:1340–9.CrossRef Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging cancer metabolism: underlying biology and emerging strategies. J Nucl Med. 2018;59:1340–9.CrossRef
24.
go back to reference Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.CrossRef Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.CrossRef
25.
go back to reference Neis EP, Sabrkhany S, Hundscheid I, Schellekens D, Lenaerts K, Olde Damink SW, et al. Human splanchnic amino-acid metabolism. Amino Acids. 2017;49:161–72.CrossRef Neis EP, Sabrkhany S, Hundscheid I, Schellekens D, Lenaerts K, Olde Damink SW, et al. Human splanchnic amino-acid metabolism. Amino Acids. 2017;49:161–72.CrossRef
26.
go back to reference Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr. 2003;133:2068S–72S.CrossRef Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr. 2003;133:2068S–72S.CrossRef
27.
go back to reference Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15.CrossRef Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15.CrossRef
28.
go back to reference Raposo B, Vaartjes D, Ahlqvist E, Nandakumar KS, Holmdahl R. System A amino acid transporters regulate glutamine uptake and attenuate antibody-mediated arthritis. Immunology. 2015;146:607–17.CrossRef Raposo B, Vaartjes D, Ahlqvist E, Nandakumar KS, Holmdahl R. System A amino acid transporters regulate glutamine uptake and attenuate antibody-mediated arthritis. Immunology. 2015;146:607–17.CrossRef
29.
go back to reference Dass PD, Murdoch FE, Wu MC. Glutamine promotes colony formation in bone marrow and HL-60 cells; accelerates myeloid differentiation in induced HL-60 cells. In Vitro. 1984;20:869–75.CrossRef Dass PD, Murdoch FE, Wu MC. Glutamine promotes colony formation in bone marrow and HL-60 cells; accelerates myeloid differentiation in induced HL-60 cells. In Vitro. 1984;20:869–75.CrossRef
30.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRef
31.
go back to reference Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.CrossRef Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.CrossRef
32.
go back to reference Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36:153–63.CrossRef Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36:153–63.CrossRef
33.
go back to reference Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 2014;15:7–15.CrossRef Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 2014;15:7–15.CrossRef
34.
go back to reference Luo Y, Yoneda J, Ohmori H, Sasaki T, Shimbo K, Eto S, et al. Cancer usurps skeletal muscle as an energy repository. Cancer Res. 2014;74:330–40.CrossRef Luo Y, Yoneda J, Ohmori H, Sasaki T, Shimbo K, Eto S, et al. Cancer usurps skeletal muscle as an energy repository. Cancer Res. 2014;74:330–40.CrossRef
35.
go back to reference Chen Q, Kirk K, Shurubor YI, Zhao D, Arreguin AJ, Shahi I, et al. Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab. 2018;27:1007–25 e5.CrossRef Chen Q, Kirk K, Shurubor YI, Zhao D, Arreguin AJ, Shahi I, et al. Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab. 2018;27:1007–25 e5.CrossRef
36.
go back to reference Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S. Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab. 2002;282:E931–6.CrossRef Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S. Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab. 2002;282:E931–6.CrossRef
37.
go back to reference Petrelli F, Viale G, Cabiddu M, Barni S. Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res Treat. 2015;153:477–91.CrossRef Petrelli F, Viale G, Cabiddu M, Barni S. Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res Treat. 2015;153:477–91.CrossRef
38.
go back to reference Penault-Llorca F, Radosevic-Robin N. Ki67 assessment in breast cancer: an update. Pathology. 2017;49:166–71.CrossRef Penault-Llorca F, Radosevic-Robin N. Ki67 assessment in breast cancer: an update. Pathology. 2017;49:166–71.CrossRef
39.
go back to reference Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.CrossRef Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.CrossRef
Metadata
Title
Dynamic PET/CT imaging of 18F-(2S, 4R)4-fluoroglutamine in healthy volunteers and oncological patients
Authors
Xiaoxia Xu
Hua Zhu
Fei Liu
Yan Zhang
Jianhua Yang
Lifang Zhang
Qing Xie
Lin Zhu
Nan Li
Hank F. Kung
Zhi Yang
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2020
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04543-w

Other articles of this Issue 10/2020

European Journal of Nuclear Medicine and Molecular Imaging 10/2020 Go to the issue