Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2019

01-07-2019 | Original Article

Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions

Authors: Francisco Fuentes-Ocampo, Diego Alfonso López-Mora, Albert Flotats, Gabriela Paillahueque, Valle Camacho, Joan Duch, Alejandro Fernández, Anna Domènech, Montserrat Estorch, Ignasi Carrió

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2019

Login to get access

Abstract

Purpose

The purpose of this study was to assess whether digital photon counting technology in digital PET/CT influences the quantification of SUVmax in target lesions and regions of reference compared to analog PET/CT before an interchangeable use of either system in follow up studies.

Methods

From January to June of 2018, 100 oncological patients underwent successive PET/CT imaging with digital and analog systems in the same day. Fifty-eight patients underwent analog imaging first and digital imaging thereafter, and 42 patients the other way round. SUVmax was measured in reference regions (liver and mediastinal blood pool) and in the most metabolically active target lesion in each patient. According to the sequence order of PET/CT acquisition, two groups of SUVmax values were obtained, i.e. group 1: analog PET/CT performed first; group 2: digital PET/CT performed first.

Results

Mean SUVmax in the total sample (regardless of the order of PET/CT acquisition) in the target lesions with the analog PET/CT was 8.14 ± 6.39 and the digital 9.97 ± 6.14 (P = 0.000). Total mean SUVmax in the liver with the analog was 4.39 ± 2.59 and the digital 4.46 ± 3.18 (P = 0.477). Total mean SUVmax in the mediastinal blood pool with the analog was 2.30 ± 0.67 and the digital 2.54 ± 0.74 (P = 0.000).
Group 1: mean SUVmax in the target lesions with the analog system was 6.64 ± 4.71 and the digital 9.48 ± 5.60 (P = 0.000). Mean liver SUVmax with the analog was 4.70 ± 2.90 and the digital 4.80 ± 3.72 (P = 0.088). Mediastinal blood pool SUVmax with the analog was 2.33 ± 0.66 and the digital 2.45 ± 0.73 (P = 0.041).
Group 2: mean SUVmax in target lesions with the digital system was 10.63 ± 6.88 and the analog 10.16 ± 7.76 (P = 0.046). Mean liver SUVmax with the digital was 3.99 ± 2.20 and the analog 3.96 ± 2.04 (P = 0.218). Mediastinal blood pool SUVmax with the digital was 2.66 ± 0.75 and the analog 2.27 ± 0.68 (P = 0.000).
No significant differences between both time delays were found.

Conclusions

Improved photon counting technology in the digital PET/CT, and the effect of delayed increased uptake and retention significantly increases SUVmax values. This has to be taken into account before interchangeable use of either system in follow up studies.
Literature
1.
go back to reference Rausch I, Ruiz A, Valverde-Pascual I, Cal-Gonzalez J, Beyer T, Carrio I. Performance evaluation of the Philips Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med. 2018; in press. Rausch I, Ruiz A, Valverde-Pascual I, Cal-Gonzalez J, Beyer T, Carrio I. Performance evaluation of the Philips Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med. 2018; in press.
2.
go back to reference Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5–19.CrossRefPubMed Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5–19.CrossRefPubMed
3.
go back to reference Slomka PJ, Pan T, Berman DS, Germano G. Advances in SPECT and PET hardware. Prog Cardiovasc Dis. 2015;57:566–78.CrossRefPubMed Slomka PJ, Pan T, Berman DS, Germano G. Advances in SPECT and PET hardware. Prog Cardiovasc Dis. 2015;57:566–78.CrossRefPubMed
4.
go back to reference Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56:1378–85.CrossRefPubMed Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56:1378–85.CrossRefPubMed
7.
8.
go back to reference Cheng G, Torigian DA, Zhuang H, Alavi A. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging. 2013;40:779–87.CrossRefPubMed Cheng G, Torigian DA, Zhuang H, Alavi A. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging. 2013;40:779–87.CrossRefPubMed
9.
go back to reference Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.CrossRefPubMed Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.CrossRefPubMed
11.
go back to reference Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.CrossRefPubMed Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.CrossRefPubMed
12.
go back to reference Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–9.PubMed Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–9.PubMed
13.
go back to reference Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33:1387–98.CrossRefPubMed Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33:1387–98.CrossRefPubMed
14.
go back to reference Tong AK, Zhang ZX, Zaheer S, Yan XS. Dual-phase (18)F-fluorocholine PET/CT to detect locoregional recurrence of prostate cancer: comparison between each time point of imaging and a summation scan. Clin Imaging. 2016;40:486–91.CrossRefPubMed Tong AK, Zhang ZX, Zaheer S, Yan XS. Dual-phase (18)F-fluorocholine PET/CT to detect locoregional recurrence of prostate cancer: comparison between each time point of imaging and a summation scan. Clin Imaging. 2016;40:486–91.CrossRefPubMed
15.
go back to reference Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2013;15:345–52.CrossRefPubMed Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2013;15:345–52.CrossRefPubMed
16.
go back to reference Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46:424–8.PubMed Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46:424–8.PubMed
17.
go back to reference Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed
18.
go back to reference Armstrong IS, Kelly MD, Williams HA, Matthews JC. Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies. EJNMMI Phys. 2014;1:99.CrossRefPubMedPubMedCentral Armstrong IS, Kelly MD, Williams HA, Matthews JC. Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies. EJNMMI Phys. 2014;1:99.CrossRefPubMedPubMedCentral
19.
go back to reference Sharifpour R, Ghafarian P, Bakhshayesh-Karam M, Jamaati H, Ay MR. Impact of time-of-flight and point-spread-function for respiratory artifact reduction in PET/CT imaging: focus on standardized uptake value. Tanaffos. 2017;16:127–35.PubMedPubMedCentral Sharifpour R, Ghafarian P, Bakhshayesh-Karam M, Jamaati H, Ay MR. Impact of time-of-flight and point-spread-function for respiratory artifact reduction in PET/CT imaging: focus on standardized uptake value. Tanaffos. 2017;16:127–35.PubMedPubMedCentral
Metadata
Title
Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions
Authors
Francisco Fuentes-Ocampo
Diego Alfonso López-Mora
Albert Flotats
Gabriela Paillahueque
Valle Camacho
Joan Duch
Alejandro Fernández
Anna Domènech
Montserrat Estorch
Ignasi Carrió
Publication date
01-07-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2019
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4256-0

Other articles of this Issue 8/2019

European Journal of Nuclear Medicine and Molecular Imaging 8/2019 Go to the issue