Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 4/2017

Open Access 01-04-2017 | Original Article

Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging

Authors: James Kelly, Alejandro Amor-Coarasa, Anastasia Nikolopoulou, Dohyun Kim, Clarence Williams Jr., Shashikanth Ponnala, John W. Babich

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 4/2017

Login to get access

Abstract

Purpose

Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features 68Ga-labeled tracers, notably [68Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer.

Methods

Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The [18F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and [18F]fluoroethylazide. The 18F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific.

Results

F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20–40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/μmol. PSMA binding (IC50) ranged from 3–36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6–14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL was 5–6 %ID/g at 1–3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for [68Ga]Ga-PSMA-HBED-CC.

Conclusions

Six [18F]triazolylphenyl ureas were prepared in good radiochemical yield. Compounds showed PSMA-specific uptake in LNCaP tumors as high as 14 % ID/g, more than a 2-fold increase over [68Ga]Ga-PSMA-HBED-CC. The facile and high-yielding radiosynthesis of these 18F-labeled triazoles as well as their promising in vitro and in vivo characteristics make them worthy of clinical development for PET imaging of prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. International Agency for Research on Cancer. Available at globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed on 18 May 2016. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. International Agency for Research on Cancer. Available at globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed on 18 May 2016.
2.
go back to reference Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.CrossRef Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.CrossRef
3.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin. 2016;2016(66):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin. 2016;2016(66):7–30.CrossRef
5.
go back to reference Bouchelouche K, Choyke PL, Capala J. Prostate specific membrane antigen – a target for imaging and therapy with radionuclides. Discov Med. 2010;9:55–61.PubMedPubMedCentral Bouchelouche K, Choyke PL, Capala J. Prostate specific membrane antigen – a target for imaging and therapy with radionuclides. Discov Med. 2010;9:55–61.PubMedPubMedCentral
6.
go back to reference Silver DA, Pellicer I, Fair WR, Heston WDW, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.PubMed Silver DA, Pellicer I, Fair WR, Heston WDW, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.PubMed
7.
go back to reference Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W, et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell. 2003;14:4835–45.CrossRefPubMedPubMedCentral Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W, et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell. 2003;14:4835–45.CrossRefPubMedPubMedCentral
8.
go back to reference Ross JS, Sheehan CE, Fisher HA, Kaufman Jr RP, Kaur P, Gray K, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;15:6357–62. Ross JS, Sheehan CE, Fisher HA, Kaufman Jr RP, Kaur P, Gray K, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;15:6357–62.
9.
go back to reference Bander NH, Trabusli EJ, Kostakoglu L, Yao D, Vallabhajosula S, Smith-Jones P, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol. 2003;170:1717–21.CrossRefPubMed Bander NH, Trabusli EJ, Kostakoglu L, Yao D, Vallabhajosula S, Smith-Jones P, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol. 2003;170:1717–21.CrossRefPubMed
10.
go back to reference Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, et al. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.PubMed Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, et al. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.PubMed
11.
go back to reference Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14:203–19.CrossRefPubMed Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14:203–19.CrossRefPubMed
12.
go back to reference Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SAMW, Rosenbaum-Krumme S, et al. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015;5:1388–401.CrossRefPubMedPubMedCentral Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SAMW, Rosenbaum-Krumme S, et al. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015;5:1388–401.CrossRefPubMedPubMedCentral
13.
go back to reference Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.CrossRefPubMed Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.CrossRefPubMed
14.
go back to reference Wüstemann T, Bauder-Wüst U, Schäfer M, Eder M, Benesova M, Leotta K, et al. Design of internalizing PSMA-specific Glu-ureido-based radiotherapeuticals. Theranostics. 2016;6(8):1085–95.CrossRefPubMedPubMedCentral Wüstemann T, Bauder-Wüst U, Schäfer M, Eder M, Benesova M, Leotta K, et al. Design of internalizing PSMA-specific Glu-ureido-based radiotherapeuticals. Theranostics. 2016;6(8):1085–95.CrossRefPubMedPubMedCentral
15.
go back to reference Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.CrossRefPubMed Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.CrossRefPubMed
16.
go back to reference Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time. Eur J Nucl Med Mol Imaging. 2008;35:1554–9.CrossRefPubMed Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time. Eur J Nucl Med Mol Imaging. 2008;35:1554–9.CrossRefPubMed
17.
go back to reference Cascini GL, Asabella AN, Notaristefano A, Restuccia A, Ferrari C, Rubini D, et al. 124Iodine: a longer-life positron emitter isotope – new opportunities in molecular imaging. BioMed Res. Int. 2014, Article ID 672094. Cascini GL, Asabella AN, Notaristefano A, Restuccia A, Ferrari C, Rubini D, et al. 124Iodine: a longer-life positron emitter isotope – new opportunities in molecular imaging. BioMed Res. Int. 2014, Article ID 672094.
18.
go back to reference Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.CrossRefPubMed Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.CrossRefPubMed
19.
go back to reference Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.CrossRefPubMedPubMedCentral Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.CrossRefPubMedPubMedCentral
20.
go back to reference Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.CrossRefPubMedPubMedCentral Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.CrossRefPubMedPubMedCentral
21.
go back to reference Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.CrossRefPubMedPubMedCentral Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.CrossRefPubMedPubMedCentral
22.
go back to reference Chen Y, Pallumbhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.CrossRefPubMedPubMedCentral Chen Y, Pallumbhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.CrossRefPubMedPubMedCentral
23.
go back to reference Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, et al. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84.CrossRefPubMedPubMedCentral Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, et al. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84.CrossRefPubMedPubMedCentral
24.
go back to reference Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17:565–74.CrossRefPubMedPubMedCentral Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17:565–74.CrossRefPubMedPubMedCentral
25.
go back to reference Bouvet V, Wuest M, Jans H-S, Janzen N, Genady AR, Valliant JF, et al. Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res. 2016;6:40.CrossRefPubMedPubMedCentral Bouvet V, Wuest M, Jans H-S, Janzen N, Genady AR, Valliant JF, et al. Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res. 2016;6:40.CrossRefPubMedPubMedCentral
26.
go back to reference Maresca KP, Hillier SM, Femia FJ, Barone DKC, Joyal JL, Zimmerman CN, et al. A Series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.CrossRefPubMed Maresca KP, Hillier SM, Femia FJ, Barone DKC, Joyal JL, Zimmerman CN, et al. A Series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.CrossRefPubMed
27.
go back to reference Glaser M, Årstad E. “Click labeling” with 2-[18F]Fluoroethylazide for positron emission tomography. Bioconjug Chem. 2007;18:989–93.CrossRefPubMed Glaser M, Årstad E. “Click labeling” with 2-[18F]Fluoroethylazide for positron emission tomography. Bioconjug Chem. 2007;18:989–93.CrossRefPubMed
28.
go back to reference Haslop A, Wells L, Gee A, Plisson C, Long N. One-pot multi-tracer synthesis of novel (18)F-labeled PET imaging agents. Mol Pharm. 2014;11(11):3818–22.CrossRefPubMed Haslop A, Wells L, Gee A, Plisson C, Long N. One-pot multi-tracer synthesis of novel (18)F-labeled PET imaging agents. Mol Pharm. 2014;11(11):3818–22.CrossRefPubMed
29.
go back to reference Amor-Coarasa A, Schoendorf M, Meckel M, Vallabhajosula S, Babich J. Comprehensive quality control of the ITG Ge-68/Ga-68 generator and synthesis of Ga-68-DOTATOC and Ga-68-PSMA-HBED-CC for clinical imaging. J Nucl Med. 2016 Amor-Coarasa A, Schoendorf M, Meckel M, Vallabhajosula S, Babich J. Comprehensive quality control of the ITG Ge-68/Ga-68 generator and synthesis of Ga-68-DOTATOC and Ga-68-PSMA-HBED-CC for clinical imaging. J Nucl Med. 2016
30.
go back to reference Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013;54:1369–76.CrossRefPubMed Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013;54:1369–76.CrossRefPubMed
31.
go back to reference Eder M, Neels O, Müller M, Bauder-Wüst U, Rembe Y, Schäfer M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals. 2014;7:779–96.CrossRefPubMedPubMedCentral Eder M, Neels O, Müller M, Bauder-Wüst U, Rembe Y, Schäfer M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals. 2014;7:779–96.CrossRefPubMedPubMedCentral
32.
go back to reference Jackson PF, Cole DC, Slusher BS, Stetz SL, Ross LE, Donzanti B, et al. Design, synthesis, and biological activity of a potent inhibitor of the neuorpeptidase N-acetylated α-linked acidic dipeptidase. J Med Chem. 1996;39:619–22.CrossRefPubMed Jackson PF, Cole DC, Slusher BS, Stetz SL, Ross LE, Donzanti B, et al. Design, synthesis, and biological activity of a potent inhibitor of the neuorpeptidase N-acetylated α-linked acidic dipeptidase. J Med Chem. 1996;39:619–22.CrossRefPubMed
33.
go back to reference Bacich DJ, Pinto JT, Tong WP, Heston WDW. Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm Genome. 2001;12:117–23.CrossRefPubMed Bacich DJ, Pinto JT, Tong WP, Heston WDW. Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm Genome. 2001;12:117–23.CrossRefPubMed
34.
go back to reference Nikolopoulou A, Amor-Coarasa A, Kelly J, Vallabhajosula V, Babich J. Comparative evaluation of 68Ga-labeled urea-based PSMA ligands in LNCaP tumor bearing mice. J Nucl Med. 2015;56(no. supplement 3):114. Nikolopoulou A, Amor-Coarasa A, Kelly J, Vallabhajosula V, Babich J. Comparative evaluation of 68Ga-labeled urea-based PSMA ligands in LNCaP tumor bearing mice. J Nucl Med. 2015;56(no. supplement 3):114.
35.
go back to reference Boiocchi M, Del Boca L, Gómez DE, Fabbrizzi L, Licchelli M, Monzani E. Nature of urea-fluoride interaction: incipient and definitive proton transfer. J Am Chem Soc. 2004;126:16507–14.CrossRefPubMed Boiocchi M, Del Boca L, Gómez DE, Fabbrizzi L, Licchelli M, Monzani E. Nature of urea-fluoride interaction: incipient and definitive proton transfer. J Am Chem Soc. 2004;126:16507–14.CrossRefPubMed
36.
go back to reference Walsh JC, Kolb HC. Applications of click chemistry in radiopharmaceutical development. Chimia. 2010;64:29–33.CrossRefPubMed Walsh JC, Kolb HC. Applications of click chemistry in radiopharmaceutical development. Chimia. 2010;64:29–33.CrossRefPubMed
37.
go back to reference Glaser M, Robins EG. ‘Click labelling’ in PET radiochemistry. J Label Compd Radiopharm. 2009;52:407–14.CrossRef Glaser M, Robins EG. ‘Click labelling’ in PET radiochemistry. J Label Compd Radiopharm. 2009;52:407–14.CrossRef
38.
go back to reference Nwe K, Brechbiel MW. Growing applications of “Click Chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009;24:289–302.CrossRefPubMedPubMedCentral Nwe K, Brechbiel MW. Growing applications of “Click Chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009;24:289–302.CrossRefPubMedPubMedCentral
39.
go back to reference Zhou D, Chu W, Dence CS, Mach RH, Welch MJ. Highly efficient click labeling using 2-[18F]fluoroethyl azide and synthesis of an 18FN-hydroxysuccinimide ester as conjugation agent. Nucl Med Biol. 2012;39:1175–81.CrossRefPubMedPubMedCentral Zhou D, Chu W, Dence CS, Mach RH, Welch MJ. Highly efficient click labeling using 2-[18F]fluoroethyl azide and synthesis of an 18FN-hydroxysuccinimide ester as conjugation agent. Nucl Med Biol. 2012;39:1175–81.CrossRefPubMedPubMedCentral
40.
go back to reference Kotbus D, Giesen Y, Ullrich R, Backes H, Neumaier B. A fully automated two-step synthesis of an F-18 labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors. Appl Radiat Isot. 2009;67:1977–84.CrossRef Kotbus D, Giesen Y, Ullrich R, Backes H, Neumaier B. A fully automated two-step synthesis of an F-18 labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors. Appl Radiat Isot. 2009;67:1977–84.CrossRef
41.
go back to reference Krapf P, Richarz R, Urusova EA, Neumaier B, Zlatopolskiy BD. Seyforth-gilbert homologation as a route to 18F-labeled building blocks: preparation of radiofluorinated phenylacetylenes and their application in PET chemistry. Eur J Org Chem. 2016;2016:430–4.CrossRef Krapf P, Richarz R, Urusova EA, Neumaier B, Zlatopolskiy BD. Seyforth-gilbert homologation as a route to 18F-labeled building blocks: preparation of radiofluorinated phenylacetylenes and their application in PET chemistry. Eur J Org Chem. 2016;2016:430–4.CrossRef
42.
go back to reference Rodionov VO, Fokin VV, Finn MG. Mechanism of the ligand-free cui-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed. 2005;44:2210–5.CrossRef Rodionov VO, Fokin VV, Finn MG. Mechanism of the ligand-free cui-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed. 2005;44:2210–5.CrossRef
43.
go back to reference Bock VD, Hiemstra H, van Maarseven JH. CuI-Catalyzed alkyne-azide “Click” cycloadditions from a mechanistic and synthetic perpective. Eur J Org Chem. 2006, 51–68. Bock VD, Hiemstra H, van Maarseven JH. CuI-Catalyzed alkyne-azide “Click” cycloadditions from a mechanistic and synthetic perpective. Eur J Org Chem. 2006, 51–68.
44.
go back to reference Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69(17):6932–40.CrossRefPubMedPubMedCentral Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69(17):6932–40.CrossRefPubMedPubMedCentral
45.
go back to reference Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/ 131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.CrossRefPubMedPubMedCentral Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/ 131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.CrossRefPubMedPubMedCentral
46.
go back to reference Machulkin AE, Ivanenkov YA, Aladinskaya AV, Veselov MS, Aladinskiy VA, Beloglazkina EK, et al. Small-molecule PSMA ligands. Current state, SAR and perspectives. J Drug Target. 2016;10:1–15. Machulkin AE, Ivanenkov YA, Aladinskaya AV, Veselov MS, Aladinskiy VA, Beloglazkina EK, et al. Small-molecule PSMA ligands. Current state, SAR and perspectives. J Drug Target. 2016;10:1–15.
47.
go back to reference Wilcken R, Zimmerman MO, Bauer MR, Rutherford TJ, Fersht AR, Joerger AC, et al. Experimental and theoretical evaluation of the ethynyl moiety as a halogen bioisostere. ACS Chem Biol. 2015;10:2725–32.CrossRefPubMedPubMedCentral Wilcken R, Zimmerman MO, Bauer MR, Rutherford TJ, Fersht AR, Joerger AC, et al. Experimental and theoretical evaluation of the ethynyl moiety as a halogen bioisostere. ACS Chem Biol. 2015;10:2725–32.CrossRefPubMedPubMedCentral
48.
go back to reference Bock VD, Speijer D, Hiemstra H, van Maarsveen JH. 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org Biomol Chem. 2007;5:971–5.CrossRefPubMed Bock VD, Speijer D, Hiemstra H, van Maarsveen JH. 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org Biomol Chem. 2007;5:971–5.CrossRefPubMed
49.
go back to reference Barinka C, Byun Y, Dusich CL, Banerjee SR, Chen Y, Castanares M, et al. Interactions between human glutamate carboxypeptidase II and urea-based Inhibitors: structural characterization. J Med Chem. 2008;51:7737–43.CrossRefPubMed Barinka C, Byun Y, Dusich CL, Banerjee SR, Chen Y, Castanares M, et al. Interactions between human glutamate carboxypeptidase II and urea-based Inhibitors: structural characterization. J Med Chem. 2008;51:7737–43.CrossRefPubMed
50.
go back to reference Tykvart J, Schimer J, Jančařík A, Bařinková J, Navrátil V, Starková J, et al. Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II. J Med Chem. 2015;58:4357–63.CrossRefPubMed Tykvart J, Schimer J, Jančařík A, Bařinková J, Navrátil V, Starková J, et al. Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II. J Med Chem. 2015;58:4357–63.CrossRefPubMed
51.
go back to reference Tykvart J, Schimer J, Bařinková J, Pachl P, Poštová-Slavětínská L, Majer P, et al. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg Med Chem. 2014;22:4099–108.CrossRefPubMed Tykvart J, Schimer J, Bařinková J, Pachl P, Poštová-Slavětínská L, Majer P, et al. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg Med Chem. 2014;22:4099–108.CrossRefPubMed
52.
go back to reference Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot. 2013;76:55–62.CrossRefPubMed Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot. 2013;76:55–62.CrossRefPubMed
53.
go back to reference Chatalic KLS, Heskamp S, Konijnenberg M, Molkenboer-Kuenen JDM, Franssen GM, Clahsen-van Groningen MC, et al. Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics. 2016;6:849–61.CrossRefPubMedPubMedCentral Chatalic KLS, Heskamp S, Konijnenberg M, Molkenboer-Kuenen JDM, Franssen GM, Clahsen-van Groningen MC, et al. Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics. 2016;6:849–61.CrossRefPubMedPubMedCentral
54.
go back to reference Mittra E, Quon A. Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am. 2009;47(1):147–60.CrossRefPubMed Mittra E, Quon A. Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am. 2009;47(1):147–60.CrossRefPubMed
55.
go back to reference Amor-Coarasa A, Kelly JM, Babich JW. Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification. Nucl Med Biol. 2015;42:685–90.CrossRefPubMed Amor-Coarasa A, Kelly JM, Babich JW. Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification. Nucl Med Biol. 2015;42:685–90.CrossRefPubMed
Metadata
Title
Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging
Authors
James Kelly
Alejandro Amor-Coarasa
Anastasia Nikolopoulou
Dohyun Kim
Clarence Williams Jr.
Shashikanth Ponnala
John W. Babich
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 4/2017
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3556-5

Other articles of this Issue 4/2017

European Journal of Nuclear Medicine and Molecular Imaging 4/2017 Go to the issue