Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2016

01-08-2016 | Original Article

[11C]TASP457, a novel PET ligand for histamine H3 receptors in human brain

Authors: Yasuyuki Kimura, Chie Seki, Yoko Ikoma, Masanori Ichise, Kazunori Kawamura, Keisuke Takahata, Sho Moriguchi, Tomohisa Nagashima, Tatsuya Ishii, Soichiro Kitamura, Fumitoshi Niwa, Hironobu Endo, Makiko Yamada, Makoto Higuchi, Ming-Rong Zhang, Tetsuya Suhara

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2016

Login to get access

Abstract

Purpose

The histamine H3 receptors are presynaptic neuroreceptors that inhibit the release of histamine and other neurotransmitters. The receptors are considered a drug target for sleep disorders and neuropsychiatric disorders with cognitive decline. We developed a novel PET ligand for the H3 receptors, [11C]TASP0410457 ([11C]TASP457), with high affinity, selectivity and favorable kinetic properties in the monkey, and evaluated its kinetics and radiation safety profile for quantifying the H3 receptors in human brain.

Methods

Ten healthy men were scanned for 120 min with a PET scanner for brain quantification and three healthy men were scanned for radiation dosimetry after injection of 386 ± 6.2 MBq and 190 ± 7.5 MBq of [11C]TASP457, respectively. For brain quantification, arterial blood sampling and metabolite analysis were performed using high-performance liquid chromatography. Distribution volumes (V T) in brain regions were determined by compartment and graphical analyses using the Logan plot and Ichise multilinear analysis (MA1). For dosimetry, radiation absorbed doses were estimated using the Medical Internal Radiation Dose scheme.

Results

[11C]TASP457 PET showed high uptake (standardized uptake values in the range of about 3 – 6) in the brain and fast washout in cortical regions and slow washout in the pallidum. The two-tissue compartment model and graphical analyses estimated V T with excellent identification using 60-min scan data (about 16 mL/cm3 in the pallidum, 9 – 14 in the basal ganglia, 6 – 9 in cortical regions, and 5 in the pons), which represents the known distribution of histamine H3 receptors. For parametric imaging, MA1 is recommended because of minimal underestimation with small intersubject variability. The organs with the highest radiation doses were the pancreas, kidneys, and liver. The effective dose delivered by [11C]TASP457 was 6.9 μSv/MBq.

Conclusion

[11C]TASP457 is a useful novel PET ligand for the investigation of the density of histamine H3 receptors in human brain.
Literature
1.
go back to reference Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832–7.CrossRefPubMed Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832–7.CrossRefPubMed
2.
go back to reference Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.CrossRefPubMed Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.CrossRefPubMed
3.
go back to reference Goodchild RE, Court JA, Hobson I, Piggott MA, Perry RH, Ince P, et al. Distribution of histamine H3-receptor binding in the normal human basal ganglia: comparison with Huntington’s and Parkinson’s disease cases. Eur J Neurosci. 1999;11:449–56.CrossRefPubMed Goodchild RE, Court JA, Hobson I, Piggott MA, Perry RH, Ince P, et al. Distribution of histamine H3-receptor binding in the normal human basal ganglia: comparison with Huntington’s and Parkinson’s disease cases. Eur J Neurosci. 1999;11:449–56.CrossRefPubMed
4.
go back to reference Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol. 2008;154:1166–81.CrossRefPubMedPubMedCentral Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol. 2008;154:1166–81.CrossRefPubMedPubMedCentral
5.
go back to reference Ashworth S, Rabiner EA, Gunn RN, Plisson C, Wilson AA, Comley RA, et al. Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med. 2010;51:1021–9.CrossRefPubMed Ashworth S, Rabiner EA, Gunn RN, Plisson C, Wilson AA, Comley RA, et al. Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med. 2010;51:1021–9.CrossRefPubMed
6.
go back to reference Ashworth S, Berges A, Rabiner EA, Wilson AA, Comley RA, Lai RYK, et al. Unexpectedly high affinity of a novel histamine H3 receptor antagonist, GSK239512, in vivo in human brain, determined using PET. Br J Pharmacol. 2014;171:1241–9.CrossRefPubMedPubMedCentral Ashworth S, Berges A, Rabiner EA, Wilson AA, Comley RA, Lai RYK, et al. Unexpectedly high affinity of a novel histamine H3 receptor antagonist, GSK239512, in vivo in human brain, determined using PET. Br J Pharmacol. 2014;171:1241–9.CrossRefPubMedPubMedCentral
7.
go back to reference Jucaite A, Takano A, Boström E, Jostell K-G, Stenkrona P, Halldin C, et al. AZD5213: a novel histamine H3 receptor antagonist permitting high daytime and low nocturnal H3 receptor occupancy, a PET study in human subjects. Int J Neuropsychopharmacol. 2013;16:1231–9.CrossRefPubMed Jucaite A, Takano A, Boström E, Jostell K-G, Stenkrona P, Halldin C, et al. AZD5213: a novel histamine H3 receptor antagonist permitting high daytime and low nocturnal H3 receptor occupancy, a PET study in human subjects. Int J Neuropsychopharmacol. 2013;16:1231–9.CrossRefPubMed
8.
go back to reference Van Laere KJ, Sanabria-Bohórquez SM, Mozley DP, Burns DH, Hamill TG, Van Hecken A, et al. 11C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists. J Nucl Med. 2014;55:65–72.CrossRefPubMed Van Laere KJ, Sanabria-Bohórquez SM, Mozley DP, Burns DH, Hamill TG, Van Hecken A, et al. 11C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists. J Nucl Med. 2014;55:65–72.CrossRefPubMed
9.
go back to reference Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321:1032–45.CrossRefPubMed Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321:1032–45.CrossRefPubMed
10.
go back to reference Koga K, Maeda J, Tokunaga M, Hanyu M, Kawamura K, Ohmichi M, et al. Development of TASP0410457 (TASP457), a novel dihydroquinolinone derivative as a PET radioligand for central histamine H3 receptors. EJNMMI Res. 2016. doi:10.1186/s13550-016-0170-2. Koga K, Maeda J, Tokunaga M, Hanyu M, Kawamura K, Ohmichi M, et al. Development of TASP0410457 (TASP457), a novel dihydroquinolinone derivative as a PET radioligand for central histamine H3 receptors. EJNMMI Res. 2016. doi:10.​1186/​s13550-016-0170-2.
11.
go back to reference Wardak M, Wong KP, Shao W, Dahlbom M, Kepe V, Satyamurthy N, et al. Movement correction method for human brain PET images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010;51:210–8.CrossRefPubMedPubMedCentral Wardak M, Wong KP, Shao W, Dahlbom M, Kepe V, Satyamurthy N, et al. Movement correction method for human brain PET images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010;51:210–8.CrossRefPubMedPubMedCentral
12.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed
13.
go back to reference Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef
14.
go back to reference Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors. Synapse. 1999;34:290–304.CrossRefPubMed Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors. Synapse. 1999;34:290–304.CrossRefPubMed
15.
go back to reference Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood–brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab. 1986;6:170–83.CrossRefPubMed Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood–brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab. 1986;6:170–83.CrossRefPubMed
16.
go back to reference Carson RE. Parameters estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert H, editors. Positron emission tomography and autoradiography: principle applications for the brain and the heart. New York: Raven Press; 1986. p. 347–90. Carson RE. Parameters estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert H, editors. Positron emission tomography and autoradiography: principle applications for the brain and the heart. New York: Raven Press; 1986. p. 347–90.
17.
go back to reference Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.CrossRefPubMed Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.CrossRefPubMed
18.
go back to reference Logan J, Fowler JS, Volkow ND, Ding Y-S, Wang G-J, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab. 2001;21:307–20.CrossRefPubMed Logan J, Fowler JS, Volkow ND, Ding Y-S, Wang G-J, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab. 2001;21:307–20.CrossRefPubMed
19.
go back to reference Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81.CrossRefPubMed Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81.CrossRefPubMed
20.
go back to reference Ichise M, Fujita M, Seibyl JP, Verhoeff NP, Baldwin RM, Zoghbi SS, et al. Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [123I]epidepride SPECT. J Nucl Med. 1999;40:1902–12.PubMed Ichise M, Fujita M, Seibyl JP, Verhoeff NP, Baldwin RM, Zoghbi SS, et al. Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [123I]epidepride SPECT. J Nucl Med. 1999;40:1902–12.PubMed
21.
go back to reference Kimura Y, Ito H, Shiraishi T, Fujiwara H, Kodaka F, Takano H, et al. Biodistribution and radiation dosimetry in humans of [11C]FLB 457, a positron emission tomography ligand for the extrastriatal dopamine D2 receptor. Nucl Med Biol. 2014;41:102–5.CrossRefPubMed Kimura Y, Ito H, Shiraishi T, Fujiwara H, Kodaka F, Takano H, et al. Biodistribution and radiation dosimetry in humans of [11C]FLB 457, a positron emission tomography ligand for the extrastriatal dopamine D2 receptor. Nucl Med Biol. 2014;41:102–5.CrossRefPubMed
22.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
23.
go back to reference Terry G, Liow J-S, Chernet E, Zoghbi SS, Phebus L, Felder CC, et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neuroimage. 2008;41:690–8.CrossRefPubMedPubMedCentral Terry G, Liow J-S, Chernet E, Zoghbi SS, Phebus L, Felder CC, et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neuroimage. 2008;41:690–8.CrossRefPubMedPubMedCentral
24.
go back to reference Hamill TG, Sato N, Jitsuoka M, Tokita S, Sanabria S, Eng W, et al. Inverse agonist histamine H3 receptor PET tracers labelled with carbon-11 or fluorine-18. Synapse. 2009;63:1122–32.CrossRefPubMed Hamill TG, Sato N, Jitsuoka M, Tokita S, Sanabria S, Eng W, et al. Inverse agonist histamine H3 receptor PET tracers labelled with carbon-11 or fluorine-18. Synapse. 2009;63:1122–32.CrossRefPubMed
25.
go back to reference Zanotti-Fregonara P, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2012;39:544–7.CrossRefPubMed Zanotti-Fregonara P, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2012;39:544–7.CrossRefPubMed
Metadata
Title
[11C]TASP457, a novel PET ligand for histamine H3 receptors in human brain
Authors
Yasuyuki Kimura
Chie Seki
Yoko Ikoma
Masanori Ichise
Kazunori Kawamura
Keisuke Takahata
Sho Moriguchi
Tomohisa Nagashima
Tatsuya Ishii
Soichiro Kitamura
Fumitoshi Niwa
Hironobu Endo
Makiko Yamada
Makoto Higuchi
Ming-Rong Zhang
Tetsuya Suhara
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2016
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3332-6

Other articles of this Issue 9/2016

European Journal of Nuclear Medicine and Molecular Imaging 9/2016 Go to the issue