Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2015

01-09-2015 | Original Article

Validation of pixel-wise parametric mapping of myocardial blood flow with 13NH3 PET in patients with hypertrophic cardiomyopathy

Authors: Roberto Sciagrà, Alessandro Passeri, Fabrizio Cipollini, Helga Castagnoli, Iacopo Olivotto, Cyrill Burger, Franco Cecchi, Alberto Pupi

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2015

Login to get access

Abstract

Purpose

Transmural abnormalities in myocardial blood flow (MBF) are important causes of ischaemia in patients with left ventricular (LV) hypertrophy. The study aimed to test whether pixel-wise parametric mapping of 13NH3 MBF can reveal transmural abnormalities in patients with hypertrophic cardiomyopathy (HCM).

Methods

We submitted 11 HCM patients and 9 age-matched controls with physiological LV hypertrophy to rest and stress (dipyridamole) 13NH3 PET. We measured MBF using a compartmental model, and obtained rest and stress parametric maps. Pixel MBF values were reorganized to obtain subendocardial and subepicardial MBF of LV segments.

Results

MBF at rest was higher in the subendocardial than in the subepicardial layer: 0.78 ± 0.19 vs. 0.60 ± 0.18 mL/min/g in HCM patients; 0.92 ± 0.24 vs. 0.75 ± 0.24 mL/min/g in controls (both p < 0.0001). Transmural perfusion gradient (TPG = subendocardial MBF/subepicardial MBF) at rest was similar: 1.35 ± 0.31 in HCM patients; 1.28 ± 0.27 in controls (NS). During stress, controls maintained higher subendocardial MBF: 2.44 ± 0.54 vs. 1.96 ± 0.67 mL/min/g tissue (p < 0.0001), with a TPG of 1.33 ± 0.35 (NS vs. rest). In HCM patients, the difference between subendocardial and subepicardial MBF was reduced (1.46 ± 0.48 vs. 1.36 ± 0.48 mL/min/g tissue, p < 0.01) and TPG decreased to 1.11 ± 0.34 (p < 0.0001 vs. rest and vs. controls). In HCM patients 8 of 176 segments had subendocardial MBF less than −2 × SD of the mean, versus none of 144 segments in controls (p < 0.01).

Conclusion

Pixel-wise parametric mapping of 13NH3 MBF enables the identification of transmural abnormalities in patients with HCM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Camici PG, Gropler RJ, Jones T, L’Abbate A, Maseri A, Melin JA, et al. The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J. 1996;17:25–34.PubMedCrossRef Camici PG, Gropler RJ, Jones T, L’Abbate A, Maseri A, Melin JA, et al. The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J. 1996;17:25–34.PubMedCrossRef
2.
go back to reference Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.PubMed Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.PubMed
4.
go back to reference Le Guludec D, Lautamäki R, Knuuti J, Bax JJ, Bengel FM; European Council of Nuclear Cardiology. Present and future of clinical cardiovascular PET imaging in Europe – a position statement by the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2008;35:1709–24.PubMedCrossRef Le Guludec D, Lautamäki R, Knuuti J, Bax JJ, Bengel FM; European Council of Nuclear Cardiology. Present and future of clinical cardiovascular PET imaging in Europe – a position statement by the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2008;35:1709–24.PubMedCrossRef
5.
go back to reference Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.PubMedCrossRef Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.PubMedCrossRef
6.
go back to reference Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104–15.PubMedCrossRef Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104–15.PubMedCrossRef
7.
go back to reference Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A, et al. Myocardial tissue fraction – correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32:2169–75.PubMed Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A, et al. Myocardial tissue fraction – correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32:2169–75.PubMed
8.
go back to reference Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation. 1992;86:167–78.PubMedCrossRef Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation. 1992;86:167–78.PubMedCrossRef
9.
go back to reference Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med. 1998;39:1696–702.PubMed Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med. 1998;39:1696–702.PubMed
10.
go back to reference Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol. 2005;7:273–85.PubMedCrossRef Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol. 2005;7:273–85.PubMedCrossRef
11.
go back to reference Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol. 1999;94:49–59.PubMedCrossRef Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol. 1999;94:49–59.PubMedCrossRef
12.
go back to reference Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H986–93.PubMedCrossRef Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H986–93.PubMedCrossRef
13.
go back to reference Vermeltfoort IA, Raijmakers PG, Lubberink M, Germans T, van Rossum AC, Lammertsma AA, et al. Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with 15O-labeled water and positron emission tomography. J Nucl Cardiol. 2011;18:650–6.PubMedCentralPubMedCrossRef Vermeltfoort IA, Raijmakers PG, Lubberink M, Germans T, van Rossum AC, Lammertsma AA, et al. Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with 15O-labeled water and positron emission tomography. J Nucl Cardiol. 2011;18:650–6.PubMedCentralPubMedCrossRef
14.
go back to reference Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart J. 2014;35:2094–105.PubMedCrossRef Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart J. 2014;35:2094–105.PubMedCrossRef
16.
go back to reference Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation. 1989;80:1328–37.PubMedCrossRef Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation. 1989;80:1328–37.PubMedCrossRef
17.
go back to reference Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med. 1993;34:488–97.PubMed Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med. 1993;34:488–97.PubMed
18.
go back to reference DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol. 1996;3:494–507.PubMedCrossRef DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol. 1996;3:494–507.PubMedCrossRef
19.
go back to reference Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail. 2012;5:535–46.PubMedCrossRef Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail. 2012;5:535–46.PubMedCrossRef
20.
go back to reference Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.PubMedCrossRef Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.PubMedCrossRef
21.
go back to reference Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83:630–8.PubMedCrossRef Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83:630–8.PubMedCrossRef
22.
go back to reference Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 2006;114:2232–9.PubMedCrossRef Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 2006;114:2232–9.PubMedCrossRef
23.
go back to reference Bracewell RN. The Fourier transform and its applications. Singapore: McGraw-Hill; 1986. p. 189–218. Bracewell RN. The Fourier transform and its applications. Singapore: McGraw-Hill; 1986. p. 189–218.
24.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al.; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al.; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.PubMedCrossRef
25.
go back to reference Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2:751–8.PubMedCrossRef Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2:751–8.PubMedCrossRef
26.
go back to reference Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med. 2011;52:745–9.PubMedCrossRef Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med. 2011;52:745–9.PubMedCrossRef
28.
go back to reference Passeri A, Formiconi AR, Meldolesi U. Physical modelling (geometrical system response, Compton scattering and attenuation) in brain SPECT using the conjugate gradients reconstruction method. Phys Med Biol. 1993;38:1727–44.CrossRef Passeri A, Formiconi AR, Meldolesi U. Physical modelling (geometrical system response, Compton scattering and attenuation) in brain SPECT using the conjugate gradients reconstruction method. Phys Med Biol. 1993;38:1727–44.CrossRef
29.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef
30.
go back to reference Passeri A, Mazzuca S, Bene VD. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging. Phys Med Biol. 2014;59:2913–34.PubMedCrossRef Passeri A, Mazzuca S, Bene VD. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging. Phys Med Biol. 2014;59:2913–34.PubMedCrossRef
31.
go back to reference Hermansen F, Lammertsma AA. Linear dimension reduction of sequences of medical images: I. Optimal inner products. Phys Med Biol. 1995;40:1909–20.PubMedCrossRef Hermansen F, Lammertsma AA. Linear dimension reduction of sequences of medical images: I. Optimal inner products. Phys Med Biol. 1995;40:1909–20.PubMedCrossRef
32.
go back to reference Hermansen F, Bloomfield PM, Ashburner J, Camici PG, Lammertsma AA. Linear dimension reduction of sequences of medical images: II. Direct sum decomposition. Phys Med Biol. 1995;40:1921–41.PubMedCrossRef Hermansen F, Bloomfield PM, Ashburner J, Camici PG, Lammertsma AA. Linear dimension reduction of sequences of medical images: II. Direct sum decomposition. Phys Med Biol. 1995;40:1921–41.PubMedCrossRef
33.
go back to reference Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43.PubMedCrossRef Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43.PubMedCrossRef
34.
go back to reference Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F18 PET. J Nucl Med. 2014;55:1438–44.PubMedCrossRef Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F18 PET. J Nucl Med. 2014;55:1438–44.PubMedCrossRef
35.
go back to reference Valenta I, Quercioli A, Schindler TH. Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging. 2014;7:387–96.PubMedCrossRef Valenta I, Quercioli A, Schindler TH. Diagnostic value of PET-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging. 2014;7:387–96.PubMedCrossRef
36.
go back to reference Knaapen P, Boellaard R, Götte MJ, Dijkmans PA, van Campen LM, de Cock CC, et al. Perfusable tissue index as a potential marker of fibrosis in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2004;45:1299–304.PubMed Knaapen P, Boellaard R, Götte MJ, Dijkmans PA, van Campen LM, de Cock CC, et al. Perfusable tissue index as a potential marker of fibrosis in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2004;45:1299–304.PubMed
37.
go back to reference Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LEJ, Hayes SW, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol. 2010;17:414–26.PubMedCrossRef Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LEJ, Hayes SW, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol. 2010;17:414–26.PubMedCrossRef
38.
go back to reference Vanzi E, De Cristofaro MT, Ramat S, Sotgia B, Mascalchi M, Formiconi AR. A direct ROI quantification method for inherent PVE correction: accuracy assessment in striatal SPECT measurements. Eur J Nucl Med Mol Imaging. 2007;34:1480–9.PubMedCrossRef Vanzi E, De Cristofaro MT, Ramat S, Sotgia B, Mascalchi M, Formiconi AR. A direct ROI quantification method for inherent PVE correction: accuracy assessment in striatal SPECT measurements. Eur J Nucl Med Mol Imaging. 2007;34:1480–9.PubMedCrossRef
Metadata
Title
Validation of pixel-wise parametric mapping of myocardial blood flow with 13NH3 PET in patients with hypertrophic cardiomyopathy
Authors
Roberto Sciagrà
Alessandro Passeri
Fabrizio Cipollini
Helga Castagnoli
Iacopo Olivotto
Cyrill Burger
Franco Cecchi
Alberto Pupi
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2015
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-015-3101-y

Other articles of this Issue 10/2015

European Journal of Nuclear Medicine and Molecular Imaging 10/2015 Go to the issue