Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2014

01-02-2014 | Original Article

High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

Authors: Jason Callahan, Michael S. Hofman, Shankar Siva, Tomas Kron, Michal E. Schneider, David Binns, Peter Eu, Rodney J. Hicks

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2014

Login to get access

Abstract

Purpose

Our group has previously reported on the use of 68Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning.

Methods

A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient’s abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior–inferior direction on the 4-D CT scan was also measured.

Results

4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78–0.79, p < 0.05). These values agreed with a visual inspection of the images with improved image coregistration around the lung bases. The diaphragmatic motion during the 4-D CT scan was highly variable with a range of 0.4–3.4 cm (SD 0.81 cm) in the right lung and 0–2.8 cm (SD 0.83 cm) in the left lung. Right-sided diaphragmatic nerve palsy was observed in 3 of 15 patients.

Conclusion

68Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including diagnostic algorithms for patients with suspected pulmonary embolism, preoperative evaluation of regional lung function and improving assessment or understanding of pulmonary physiology in the vast range of pulmonary diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wagner Jr HN, Sabiston Jr DC, Iio M, McAfee JG, Meyer JK, Langan JK. Regional pulmonary blood flow in man by radioisotope scanning. JAMA. 1964;187:601–3.PubMedCrossRef Wagner Jr HN, Sabiston Jr DC, Iio M, McAfee JG, Meyer JK, Langan JK. Regional pulmonary blood flow in man by radioisotope scanning. JAMA. 1964;187:601–3.PubMedCrossRef
2.
go back to reference Leblanc M, Leveillee F, Turcotte E. Prospective evaluation of the negative predictive value of VQ SPECT using 99mTc-Technegas. Nucl Med Commun. 2007;28(8):667–72.PubMedCrossRef Leblanc M, Leveillee F, Turcotte E. Prospective evaluation of the negative predictive value of VQ SPECT using 99mTc-Technegas. Nucl Med Commun. 2007;28(8):667–72.PubMedCrossRef
3.
go back to reference Jogi J, Jonson B, Ekberg M, Bajc M. Ventilation-perfusion SPECT with 99mTc-DTPA versus technegas: a head-to-head study in obstructive and nonobstructive disease. J Nucl Med. 2010;51(5):735–41.PubMedCrossRef Jogi J, Jonson B, Ekberg M, Bajc M. Ventilation-perfusion SPECT with 99mTc-DTPA versus technegas: a head-to-head study in obstructive and nonobstructive disease. J Nucl Med. 2010;51(5):735–41.PubMedCrossRef
4.
go back to reference Roach PJ, Gradinscak DJ, Schembri GP, Bailey EA, Willowson KP, Bailey DL. SPECT/CT in VQ scanning. Semin Nucl Med. 2010;40(6):455–66.PubMedCrossRef Roach PJ, Gradinscak DJ, Schembri GP, Bailey EA, Willowson KP, Bailey DL. SPECT/CT in VQ scanning. Semin Nucl Med. 2010;40(6):455–66.PubMedCrossRef
5.
go back to reference Hofman MS, Kong G, Neels OC, Eu P, Hong E, Hicks RJ. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol. 2012;56(1):40–7.PubMedCrossRef Hofman MS, Kong G, Neels OC, Eu P, Hong E, Hicks RJ. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol. 2012;56(1):40–7.PubMedCrossRef
6.
go back to reference Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34(10):1617–26.PubMedCrossRef Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34(10):1617–26.PubMedCrossRef
7.
go back to reference Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol. 2012;9(12):712–20.PubMedCrossRef Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol. 2012;9(12):712–20.PubMedCrossRef
8.
go back to reference Kotzerke J, Andreeff M, Wunderlich G. PET aerosol lung scintigraphy using Galligas. Eur J Nucl Med Mol Imaging. 2010;37(1):175–7.PubMedCrossRef Kotzerke J, Andreeff M, Wunderlich G. PET aerosol lung scintigraphy using Galligas. Eur J Nucl Med Mol Imaging. 2010;37(1):175–7.PubMedCrossRef
9.
10.
go back to reference Kotzerke J, Andreeff M, Wunderlich G, Wiggermann P, Zophel K. Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin. 2010;49(6):203–8.PubMedCrossRef Kotzerke J, Andreeff M, Wunderlich G, Wiggermann P, Zophel K. Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin. 2010;49(6):203–8.PubMedCrossRef
11.
go back to reference Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ. 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J Nucl Med. 2011;52(10):1513–9.PubMedCrossRef Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ. 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J Nucl Med. 2011;52(10):1513–9.PubMedCrossRef
12.
go back to reference Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef
13.
go back to reference Suga K, Yasuhiko K, Zaki M, Yamashita T, Seto A, Matsumoto T, et al. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences. Eur J Nucl Med Mol Imaging. 2004;31(2):240–9.PubMedCrossRef Suga K, Yasuhiko K, Zaki M, Yamashita T, Seto A, Matsumoto T, et al. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences. Eur J Nucl Med Mol Imaging. 2004;31(2):240–9.PubMedCrossRef
14.
go back to reference Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004;31(12):3179–86.PubMedCrossRef Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004;31(12):3179–86.PubMedCrossRef
15.
go back to reference Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, et al. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiat Oncol Biol Phys. 2013;86(4):749–54.PubMedCrossRef Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, et al. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiat Oncol Biol Phys. 2013;86(4):749–54.PubMedCrossRef
16.
go back to reference Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7(1):67–81.PubMed Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat. 2008;7(1):67–81.PubMed
17.
go back to reference Dinkel J, Hintze C, Tetzlaff R, Huber PE, Herfarth K, Debus J, et al. 4D-MRI analysis of lung tumor motion in patients with hemidiaphragmatic paralysis. Radiother Oncol. 2009;91(3):449–54.PubMedCrossRef Dinkel J, Hintze C, Tetzlaff R, Huber PE, Herfarth K, Debus J, et al. 4D-MRI analysis of lung tumor motion in patients with hemidiaphragmatic paralysis. Radiother Oncol. 2009;91(3):449–54.PubMedCrossRef
18.
go back to reference Nyeng TB, Kallehauge JF, Hoyer M, Petersen JB, Poulsen PR, Muren LP. Clinical validation of a 4D-CT based method for lung ventilation measurement in phantoms and patients. Acta Oncol. 2011;50(6):897–907.PubMedCrossRef Nyeng TB, Kallehauge JF, Hoyer M, Petersen JB, Poulsen PR, Muren LP. Clinical validation of a 4D-CT based method for lung ventilation measurement in phantoms and patients. Acta Oncol. 2011;50(6):897–907.PubMedCrossRef
19.
go back to reference Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ. Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(1):279–88.PubMedCrossRef Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ. Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(1):279–88.PubMedCrossRef
21.
go back to reference Cui G, Gopalan S, Yamamoto T, Berger J, Maxim PG, Keall PJ. Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback. J Appl Clin Med Phys. 2010;11(4):3262.PubMedCentralPubMed Cui G, Gopalan S, Yamamoto T, Berger J, Maxim PG, Keall PJ. Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback. J Appl Clin Med Phys. 2010;11(4):3262.PubMedCentralPubMed
Metadata
Title
High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT
Authors
Jason Callahan
Michael S. Hofman
Shankar Siva
Tomas Kron
Michal E. Schneider
David Binns
Peter Eu
Rodney J. Hicks
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2607-4

Other articles of this Issue 2/2014

European Journal of Nuclear Medicine and Molecular Imaging 2/2014 Go to the issue