Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2012

01-07-2012 | Original Article

Predictive value of early and late residual 18F-fluorodeoxyglucose and 18F-fluorothymidine uptake using different SUV measurements in patients with non-small-cell lung cancer treated with erlotinib

Authors: Carsten Kobe, Matthias Scheffler, Arne Holstein, Thomas Zander, Lucia Nogova, Adriaan A. Lammertsma, Ronald Boellaard, Bernd Neumaier, Roland T. Ullrich, Markus Dietlein, Jürgen Wolf, Deniz Kahraman

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2012

Login to get access

Abstract

Purpose

To evaluate the predictive value of early and late residual 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) uptake using different SUV measurements in PET in patients with advanced non-small-cell lung cancer (NSCLC) treated with erlotinib.

Methods

We retrospectively reviewed data from 30 patients with untreated stage IV NSCLC who had undergone a combined FDG PET and FLT PET scan at 1 week (early) and 6 weeks (late) after the start of erlotinib treatment. Early and late residual FDG and FLT uptake were measured in up to five lesions per scan with different quantitative standardized uptake values (SUVmax, SUV2Dpeak, SUV3Dpeak, SUV50, SUVA50, SUVA41) and compared with short-term outcome (progression vs. nonprogression after 6 weeks of erlotinib treatment). Receiver-operating characteristics (ROC) curve analysis was used to determine the optimal cut-off value for detecting nonprogression after 6 weeks. Kaplan-Meier analysis and the log-rank test were used to evaluate the association between residual uptake and progression-free survival (PFS).

Results

Nonprogression after 6 weeks was associated with a significantly lower early and late residual FDG uptake, measured with different quantitative parameters. In contrast, nonprogression after 6 weeks was not associated with early and late residual FLT uptake. Furthermore, patients with a lower early residual FDG uptake measured in terms of SUVmax and SUV2Dpeak had a significantly prolonged PFS (282 days vs. 118 days; p = 0.022) than patients with higher values. Similarly, lower late residual FDG uptake and early residual FLT uptake measured in terms of SUV3Dpeak, SUVA50 and SUVA41, and late FLT uptake measured in terms of SUV3Dpeak and SUVA50 was associated with an improved PFS.

Conclusion

Early and late residual FDG uptake, measured using different quantitative SUV parameters, are predictive factors for short-term outcome in patients with advanced NSCLC treated with erlotinib. Additionally, low residual FDG and FLT uptake early and late in the course of erlotinib treatment is associated with improved PFS.
Literature
1.
go back to reference Prior JO, Montemurro M, Orcurto MV, Michielin O, Luthi F, Benhattar J, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27(3):439–45.PubMedCrossRef Prior JO, Montemurro M, Orcurto MV, Michielin O, Luthi F, Benhattar J, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27(3):439–45.PubMedCrossRef
2.
go back to reference Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ, et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res. 2011;17(10):3304–15.PubMedCrossRef Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ, et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res. 2011;17(10):3304–15.PubMedCrossRef
3.
go back to reference Zander T, Scheffler M, Nogova L, Kobe C, Engel-Riedel W, Hellmich M, et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol. 2011;29(13):1701–8.PubMedCrossRef Zander T, Scheffler M, Nogova L, Kobe C, Engel-Riedel W, Hellmich M, et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol. 2011;29(13):1701–8.PubMedCrossRef
4.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.PubMedCrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.PubMedCrossRef
5.
go back to reference Kahraman D, Scheffler M, Zander T, Nogova L, Lammertsma AA, Boellaard R. Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3'-deoxy-3'-18F-fluorothymidine PET. J Nucl Med. 2011;52(12):1871–7.PubMedCrossRef Kahraman D, Scheffler M, Zander T, Nogova L, Lammertsma AA, Boellaard R. Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3'-deoxy-3'-18F-fluorothymidine PET. J Nucl Med. 2011;52(12):1871–7.PubMedCrossRef
6.
go back to reference Akhurst T, Downey RJ, Ginsberg MS, Gonen M, Bains M, Korst R, et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg. 2002;73:259–64.PubMedCrossRef Akhurst T, Downey RJ, Ginsberg MS, Gonen M, Bains M, Korst R, et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg. 2002;73:259–64.PubMedCrossRef
7.
go back to reference Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–70.PubMedCrossRef Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–70.PubMedCrossRef
8.
go back to reference Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52 Suppl 2:93S–100S.PubMedCrossRef Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52 Suppl 2:93S–100S.PubMedCrossRef
9.
go back to reference Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–27.PubMed
10.
go back to reference Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294–301.PubMedCrossRef Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294–301.PubMedCrossRef
11.
go back to reference van Heijl M, Omloo JM, van Berge Henegouwen MI, van Lanschot JJ, Sloof GW, Boellaard R. Influence of ROI definition, partial volume correction and SUV normalization on SUV–survival correlation in oesophageal cancer. Nucl Med Commun. 2010;31(7):652–8.PubMed van Heijl M, Omloo JM, van Berge Henegouwen MI, van Lanschot JJ, Sloof GW, Boellaard R. Influence of ROI definition, partial volume correction and SUV normalization on SUV–survival correlation in oesophageal cancer. Nucl Med Commun. 2010;31(7):652–8.PubMed
12.
go back to reference Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.PubMedCrossRef Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.PubMedCrossRef
13.
go back to reference Denecke T, Hundsdorfer P, Misch D, Steffen IG, Schonberger S, Furth C, et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging. 2010;37(10):1842–53.PubMedCrossRef Denecke T, Hundsdorfer P, Misch D, Steffen IG, Schonberger S, Furth C, et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging. 2010;37(10):1842–53.PubMedCrossRef
14.
go back to reference Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, Moon DH, et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res. 2008;14(22):7423–9.PubMedCrossRef Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, Moon DH, et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res. 2008;14(22):7423–9.PubMedCrossRef
15.
go back to reference Buckler AJ, Boellaard R. Standardization of quantitative imaging: the time is right, and 18F-FDG PET/CT is a good place to start. J Nucl Med. 2011;52(2):171–2.PubMedCrossRef Buckler AJ, Boellaard R. Standardization of quantitative imaging: the time is right, and 18F-FDG PET/CT is a good place to start. J Nucl Med. 2011;52(2):171–2.PubMedCrossRef
16.
go back to reference Binns DS, Pirzkall A, Yu W, Callahan J, Mileshkin L, Conti P, et al. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38(4):642–50.PubMedCrossRef Binns DS, Pirzkall A, Yu W, Callahan J, Mileshkin L, Conti P, et al. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38(4):642–50.PubMedCrossRef
Metadata
Title
Predictive value of early and late residual 18F-fluorodeoxyglucose and 18F-fluorothymidine uptake using different SUV measurements in patients with non-small-cell lung cancer treated with erlotinib
Authors
Carsten Kobe
Matthias Scheffler
Arne Holstein
Thomas Zander
Lucia Nogova
Adriaan A. Lammertsma
Ronald Boellaard
Bernd Neumaier
Roland T. Ullrich
Markus Dietlein
Jürgen Wolf
Deniz Kahraman
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2012
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-012-2118-8

Other articles of this Issue 7/2012

European Journal of Nuclear Medicine and Molecular Imaging 7/2012 Go to the issue