Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2011

Open Access 01-08-2011 | Original Article

Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study

Authors: Dominic A. X. Schinagl, Paul N. Span, Wim J. Oyen, Johannes H. A. M. Kaanders

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2011

Login to get access

Abstract

Purpose

In head and neck cancer (HNC) various treatment strategies have been developed to improve outcome, but selecting patients for these intensified treatments remains difficult. Therefore, identification of novel pretreatment assays to predict outcome is of interest. In HNC there are indications that pretreatment tumour 18F-fluorodeoxyglucose (FDG) uptake may be an independent prognostic factor. The aim of this study was to assess the prognostic value of FDG uptake and CT-based and FDG PET-based primary tumour volume measurements in patients with HNC treated with (chemo)radiotherapy.

Methods

A total of 77 patients with stage II–IV HNC who were eligible for definitive (chemo)radiotherapy underwent coregistered pretreatment CT and FDG PET. The gross tumour volume of the primary tumour was determined on the CT (GTVCT) and FDG PET scans. Five PET segmentation methods were applied: interpreting FDG PET visually (PETVIS), applying an isocontour at a standardized uptake value (SUV) of 2.5 (PET2.5), using fixed thresholds of 40% and 50% (PET40%, PET50%) of the maximum intratumoral FDG activity (SUVMAX) and applying an adaptive threshold based on the signal-to-background (PETSBR). Mean FDG uptake for each PET-based volume was recorded (SUVmean). Subsequently, to determine the metabolic volume, the integrated SUV was calculated as the product of PET-based volume and SUVmean. All these variables were analysed as potential predictors of local control (LC), regional recurrence-free survival (RRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS).

Results

In oral cavity/oropharynx tumours PETVIS was the only volume-based method able to predict LC. Both PETVIS and GTVCT were able to predict DMFS, DFS and OS in these subsites. Integrated SUVs were associated with LC, DMFS, DFS and OS, while SUVmean and SUVMAX were not. In hypopharyngeal/laryngeal tumours none of the variables was associated with outcome.

Conclusion

There is no role yet for pretreatment FDG PET as a predictor of (chemo)radiotherapy outcome in HNC in daily routine. However, this potential application needs further exploration, focusing both on FDG PET-based primary tumour volume, integrated SUV and SUVMAX of the primary tumour.
Literature
1.
go back to reference Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–300.PubMedCrossRef Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–300.PubMedCrossRef
2.
go back to reference Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys. 2004;60:1419–24.PubMedCrossRef Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys. 2004;60:1419–24.PubMedCrossRef
3.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed
4.
go back to reference Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning for oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2002;53:1051–7.PubMedCrossRef Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning for oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2002;53:1051–7.PubMedCrossRef
5.
go back to reference Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in non-small-lung cancer. Int J Radiat Oncol Biol Phys. 2006;65:726–32.PubMedCrossRef Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in non-small-lung cancer. Int J Radiat Oncol Biol Phys. 2006;65:726–32.PubMedCrossRef
6.
go back to reference Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.PubMedCrossRef Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.PubMedCrossRef
7.
go back to reference Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target volume delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67:720–6.PubMedCrossRef Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target volume delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67:720–6.PubMedCrossRef
8.
go back to reference Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.PubMedCrossRef Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.PubMedCrossRef
9.
go back to reference Brianzoni E, Rossi G, Ancidei S, Berbellini A, Capoccetti F, Cidda C, et al. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumor volume and clinical target volume. Eur J Nucl Med Mol Imaging. 2005;32:1392–9.PubMedCrossRef Brianzoni E, Rossi G, Ancidei S, Berbellini A, Capoccetti F, Cidda C, et al. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumor volume and clinical target volume. Eur J Nucl Med Mol Imaging. 2005;32:1392–9.PubMedCrossRef
10.
go back to reference Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computed tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.PubMedCrossRef Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computed tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.PubMedCrossRef
11.
go back to reference Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002;52:339–50.PubMedCrossRef Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002;52:339–50.PubMedCrossRef
12.
go back to reference Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation treatment. Int J Radiat Oncol Biol Phys. 2002;53:353–9.PubMedCrossRef Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation treatment. Int J Radiat Oncol Biol Phys. 2002;53:353–9.PubMedCrossRef
13.
go back to reference Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005;61:1385–92.PubMedCrossRef Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005;61:1385–92.PubMedCrossRef
14.
go back to reference Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.PubMedCrossRef
15.
go back to reference Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.PubMedCrossRef Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.PubMedCrossRef
16.
go back to reference Vogel WV, Wensing BM, van Dalen JA, Krabbe PF, van den Hoogen FJ, Oyen W. Optimised PET reconstruction of the head and neck area: improved diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2005;32:1276–82.PubMedCrossRef Vogel WV, Wensing BM, van Dalen JA, Krabbe PF, van den Hoogen FJ, Oyen W. Optimised PET reconstruction of the head and neck area: improved diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2005;32:1276–82.PubMedCrossRef
17.
go back to reference Vogel WV, Schinagl DA, van Dalen JA, Kaanders JH, Oyen WJ. Validated image fusion of dedicated PET and CT for external beam radiation therapy in the head and neck area. Q J Nucl Med Mol Imaging. 2008;52:74–83.PubMed Vogel WV, Schinagl DA, van Dalen JA, Kaanders JH, Oyen WJ. Validated image fusion of dedicated PET and CT for external beam radiation therapy in the head and neck area. Q J Nucl Med Mol Imaging. 2008;52:74–83.PubMed
18.
go back to reference Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol. 2009;91:95–100.PubMedCrossRef Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol. 2009;91:95–100.PubMedCrossRef
19.
go back to reference Brun E, Kjellén E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck. 2002;24:127–35.PubMedCrossRef Brun E, Kjellén E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck. 2002;24:127–35.PubMedCrossRef
20.
go back to reference Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer. 2002;86:512–6.PubMedCrossRef Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer. 2002;86:512–6.PubMedCrossRef
21.
go back to reference Lee SW, Nam SY, Im KC, Kim JS, Choi EK, Ahn SD, et al. Prediction of prognosis using standardized uptake value of 2-[(18)F]fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol. 2008;97:211–6.CrossRef Lee SW, Nam SY, Im KC, Kim JS, Choi EK, Ahn SD, et al. Prediction of prognosis using standardized uptake value of 2-[(18)F]fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol. 2008;97:211–6.CrossRef
22.
go back to reference Machtay M, Natwa M, Andrel J, Hyslop T, Anne PR, Lavarino J, et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck. 2009;31:195–201.PubMedCrossRef Machtay M, Natwa M, Andrel J, Hyslop T, Anne PR, Lavarino J, et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck. 2009;31:195–201.PubMedCrossRef
23.
go back to reference Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med. 1997;38:1907–11.PubMed Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med. 1997;38:1907–11.PubMed
24.
go back to reference Roh JL, Pae KH, Choi SH, Kim JS, Lee S, Kim SB, et al. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol. 2007;33:790–5.PubMed Roh JL, Pae KH, Choi SH, Kim JS, Lee S, Kim SB, et al. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol. 2007;33:790–5.PubMed
25.
go back to reference Schwartz DL, Rajendran J, Yueh B, Coltrera MD, Leblanc M, Eary J, et al. FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch Otolaryngol Head Neck Surg. 2004;130:1361–7.PubMedCrossRef Schwartz DL, Rajendran J, Yueh B, Coltrera MD, Leblanc M, Eary J, et al. FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch Otolaryngol Head Neck Surg. 2004;130:1361–7.PubMedCrossRef
26.
go back to reference Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.PubMedCrossRef Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.PubMedCrossRef
27.
go back to reference La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.PubMedCrossRef La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.PubMedCrossRef
28.
go back to reference Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.PubMedCrossRef Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.PubMedCrossRef
29.
go back to reference Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol. 2008;89:13–8.PubMedCrossRef Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol. 2008;89:13–8.PubMedCrossRef
30.
go back to reference Suzuki K, Nishioka T, Homma A, Tsuchiya K, Yasuda M, Aoyama H, et al. Value of fluorodeoxyglucose positron emission tomography before radiotherapy for head and neck cancer: does standardized value predict treatment outcome? Jpn J Radiol. 2009;27:237–42.PubMedCrossRef Suzuki K, Nishioka T, Homma A, Tsuchiya K, Yasuda M, Aoyama H, et al. Value of fluorodeoxyglucose positron emission tomography before radiotherapy for head and neck cancer: does standardized value predict treatment outcome? Jpn J Radiol. 2009;27:237–42.PubMedCrossRef
31.
go back to reference Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation treatment outcome in head and neck cancer patients. Radiother Oncol. 2006;80:151–6.PubMedCrossRef Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation treatment outcome in head and neck cancer patients. Radiother Oncol. 2006;80:151–6.PubMedCrossRef
32.
go back to reference Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys. 2008;70:678–84.PubMedCrossRef Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys. 2008;70:678–84.PubMedCrossRef
33.
go back to reference Hermans R, Op de Beeck K, Van den Bogaert W, Rijnders A, Staelens L, Feron M, et al. The relation of CT-determined tumor parameters and local and regional outcome of tonsillar cancer after definitive radiation treatment. Int J Radiat Oncol Biol Phys. 2001;50:37–45.PubMedCrossRef Hermans R, Op de Beeck K, Van den Bogaert W, Rijnders A, Staelens L, Feron M, et al. The relation of CT-determined tumor parameters and local and regional outcome of tonsillar cancer after definitive radiation treatment. Int J Radiat Oncol Biol Phys. 2001;50:37–45.PubMedCrossRef
34.
go back to reference Nathu RM, Mancuso AA, Zhu TC, Mendenhall WM. The impact of primary tumor volume on local control for oropharyngeal squamous cell carcinoma treated with radiotherapy. Head Neck. 2000;22:1–5.PubMedCrossRef Nathu RM, Mancuso AA, Zhu TC, Mendenhall WM. The impact of primary tumor volume on local control for oropharyngeal squamous cell carcinoma treated with radiotherapy. Head Neck. 2000;22:1–5.PubMedCrossRef
35.
go back to reference Chao KS, Ozyigit G, Blanco AI, Thorstad WL, Deasy JO, Haughey BH, et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2004;59:43–50.PubMedCrossRef Chao KS, Ozyigit G, Blanco AI, Thorstad WL, Deasy JO, Haughey BH, et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2004;59:43–50.PubMedCrossRef
36.
go back to reference Hoogsteen IJ, Marres HA, Wijffels KI, Rijken PF, Peters JP, van den Hoogen FJ, et al. Colocalization of carbonic anhydrase 9 expression and cell proliferation in human head and neck squamous cell carcinoma. Clin Cancer Res. 2005;11:97–106.PubMed Hoogsteen IJ, Marres HA, Wijffels KI, Rijken PF, Peters JP, van den Hoogen FJ, et al. Colocalization of carbonic anhydrase 9 expression and cell proliferation in human head and neck squamous cell carcinoma. Clin Cancer Res. 2005;11:97–106.PubMed
37.
go back to reference Hermans R. Head and neck cancer: how imaging predicts treatment outcome. Cancer Imaging. 2006;6:S145–53.PubMedCrossRef Hermans R. Head and neck cancer: how imaging predicts treatment outcome. Cancer Imaging. 2006;6:S145–53.PubMedCrossRef
38.
go back to reference Troost EG, Schinagl DA, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJ, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2010;51:66–76.PubMedCrossRef Troost EG, Schinagl DA, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJ, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2010;51:66–76.PubMedCrossRef
Metadata
Title
Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study
Authors
Dominic A. X. Schinagl
Paul N. Span
Wim J. Oyen
Johannes H. A. M. Kaanders
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1789-x

Other articles of this Issue 8/2011

European Journal of Nuclear Medicine and Molecular Imaging 8/2011 Go to the issue