Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2011

01-05-2011 | Review Article

Absolute quantification in SPECT

Authors: Philipp Ritt, Hans Vija, Joachim Hornegger, Torsten Kuwert

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2011

Login to get access

Abstract

Single-photon emission computed tomography (SPECT) allows the three-dimensional visualization of radioactivity within the human body and is widely used for clinical purposes. In SPECT, image quality is compromised by several factors including photon attenuation, photon scatter, the partial volume effect, and motion artefacts. These variables also confound the capacity of SPECT to quantify the concentration of radioactivity within given volumes of interest in absolute units, e.g. as kilobecquerels per cubic centimetre. In the last decade, considerable technical progress has been achieved in SPECT image reconstruction, involving, in particular, the development of iterative image reconstruction techniques. Furthermore, hybrid cameras integrating a SPECT camera with an X-ray CT scanner have become commercially available. These systems allow the acquisition of SPECT and CT datasets registered to each other with a high anatomical accuracy. First studies have shown that iterative SPECT image reconstruction techniques incorporating information from SPECT/CT image datasets greatly increase the accuracy of SPECT in quantifying radioactivity concentrations in phantoms and also in humans. This new potential of SPECT may improve not only diagnostic accuracy, but also dosimetry for internal radiotherapy.
Literature
1.
go back to reference Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid Imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med. 2009;39:276–89.PubMedCrossRef Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid Imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med. 2009;39:276–89.PubMedCrossRef
3.
go back to reference Jaszczak RJ, Greer KL, Floyd Jr CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.PubMed Jaszczak RJ, Greer KL, Floyd Jr CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.PubMed
4.
go back to reference Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med. 1988;29:195–202.PubMed Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med. 1988;29:195–202.PubMed
5.
go back to reference Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci. 1994;41:1585–93.CrossRef Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci. 1994;41:1585–93.CrossRef
6.
go back to reference LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. Nucl Sci IEEE Trans. 1994;41:2793–9.CrossRef LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. Nucl Sci IEEE Trans. 1994;41:2793–9.CrossRef
7.
go back to reference Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. Nucl Sci IEEE Trans. 1996;43:2263–74.CrossRef Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. Nucl Sci IEEE Trans. 1996;43:2263–74.CrossRef
9.
go back to reference El Fakhri GN, Buvat I, Pélégrini M, Benali H, Almeida P, Bendriem B, et al. Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med Mol Imaging. 1999;26:437–46. doi:10.1007/s002590050409.CrossRef El Fakhri GN, Buvat I, Pélégrini M, Benali H, Almeida P, Bendriem B, et al. Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med Mol Imaging. 1999;26:437–46. doi:10.​1007/​s002590050409.CrossRef
10.
go back to reference Kessler RM, Ellis JRJ, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.PubMedCrossRef Kessler RM, Ellis JRJ, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.PubMedCrossRef
11.
go back to reference Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27:161–9.PubMedCrossRef Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27:161–9.PubMedCrossRef
12.
go back to reference Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. J Nucl Med. 1998;39:1302–5.PubMed Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. J Nucl Med. 1998;39:1302–5.PubMed
14.
go back to reference Germain P, Baruthio J, Roul G, Dumitresco B. First-pass MRI compartmental analysis at the chronic stage of infarction: myocardial flow reserve parametric map. Comput Cardiol. 2000;2000:675–8. Germain P, Baruthio J, Roul G, Dumitresco B. First-pass MRI compartmental analysis at the chronic stage of infarction: myocardial flow reserve parametric map. Comput Cardiol. 2000;2000:675–8.
17.
go back to reference Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography – basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.PubMedCrossRef Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography – basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.PubMedCrossRef
18.
go back to reference Gilland DR, Jaszczak RJ, Liang Z, Greer KL, Coleman RE. Quantitative SPECT brain imaging: effects of attenuation and detector response. Nuclear Science Symposium and Medical Imaging Conference, 1991, Conference Record of the 1991 IEEE. 1991;3:1723–27. Gilland DR, Jaszczak RJ, Liang Z, Greer KL, Coleman RE. Quantitative SPECT brain imaging: effects of attenuation and detector response. Nuclear Science Symposium and Medical Imaging Conference, 1991, Conference Record of the 1991 IEEE. 1991;3:1723–27.
19.
go back to reference Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med. 1995;36:1489–513.PubMed Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med. 1995;36:1489–513.PubMed
20.
go back to reference Tsui BM, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol. 1994;39:509–30.PubMedCrossRef Tsui BM, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol. 1994;39:509–30.PubMedCrossRef
21.
go back to reference Kohli V, King MA, Glick SJ, Pan TS. Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol. 1998;43:1025–37.PubMedCrossRef Kohli V, King MA, Glick SJ, Pan TS. Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol. 1998;43:1025–37.PubMedCrossRef
22.
go back to reference Kohli V, King MA, Tin-Su P, Glick SJ. Compensation for distance-dependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness. Nucl Sci IEEE Trans. 1998;45:1104–10.CrossRef Kohli V, King MA, Tin-Su P, Glick SJ. Compensation for distance-dependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness. Nucl Sci IEEE Trans. 1998;45:1104–10.CrossRef
23.
go back to reference Pretorius PH, King MA, Pan TS, de Vries DJ, Glick SJ, Byrne CL. Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol. 1998;43:407–20.PubMedCrossRef Pretorius PH, King MA, Pan TS, de Vries DJ, Glick SJ, Byrne CL. Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol. 1998;43:407–20.PubMedCrossRef
24.
go back to reference Frey EC, Tsui BM. Collimator-detector response compensation in SPECT. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2005. p. 141–66. Frey EC, Tsui BM. Collimator-detector response compensation in SPECT. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2005. p. 141–66.
25.
go back to reference Chang L-T. A method for attenuation correction in radionuclide computed tomography. Nucl Sci IEEE Trans. 1978;25:638–43.CrossRef Chang L-T. A method for attenuation correction in radionuclide computed tomography. Nucl Sci IEEE Trans. 1978;25:638–43.CrossRef
26.
go back to reference Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed
27.
28.
go back to reference Koral KF, Clinthorne NH, Rogers WL. Improving emission-computed-tomography quantification by Compton-scatter rejection through offset windows. Nucl Instrum Methods Phys Res Sect A. 1986;242:610–4.CrossRef Koral KF, Clinthorne NH, Rogers WL. Improving emission-computed-tomography quantification by Compton-scatter rejection through offset windows. Nucl Instrum Methods Phys Res Sect A. 1986;242:610–4.CrossRef
29.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. Med Imaging IEEE Trans. 1991;10:408–12.CrossRef Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. Med Imaging IEEE Trans. 1991;10:408–12.CrossRef
30.
go back to reference Zaidi H, Koral K. Scatter correction strategies in emission tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 205–35. Zaidi H, Koral K. Scatter correction strategies in emission tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 205–35.
31.
go back to reference Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595–604.PubMedCrossRef Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595–604.PubMedCrossRef
32.
go back to reference Vandervoort E, Celler A, Harrop R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol. 2007;52:1527–45.PubMedCrossRef Vandervoort E, Celler A, Harrop R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol. 2007;52:1527–45.PubMedCrossRef
33.
go back to reference Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. Nucl Sci IEEE Trans. 1998;45:3202–14.CrossRef Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. Nucl Sci IEEE Trans. 1998;45:3202–14.CrossRef
34.
go back to reference Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol. 1984;29:1217–30.PubMedCrossRef Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol. 1984;29:1217–30.PubMedCrossRef
35.
go back to reference Ljungberg M, Strand S-E. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990;31:1560–7.PubMed Ljungberg M, Strand S-E. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990;31:1560–7.PubMed
36.
go back to reference Frey EC, Tsui BM. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. Nucl Sci IEEE Trans. 1990;37:1308–15.CrossRef Frey EC, Tsui BM. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. Nucl Sci IEEE Trans. 1990;37:1308–15.CrossRef
37.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Elsevier; 2003. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Elsevier; 2003.
38.
go back to reference Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. Nucl Sci IEEE Trans. 2003;50:315–20.CrossRef Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. Nucl Sci IEEE Trans. 2003;50:315–20.CrossRef
39.
go back to reference Branderhorst W, Vastenhouw B, van der Have F, Blezer E, Bleeker W, Beekman F. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38:552–561.CrossRef Branderhorst W, Vastenhouw B, van der Have F, Blezer E, Bleeker W, Beekman F. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38:552–561.CrossRef
40.
go back to reference Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.PubMedCrossRef Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.PubMedCrossRef
41.
go back to reference Chen CH, Muzic Jr RF, Nelson AD, Adler LP. A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. Med Imaging IEEE Trans. 1998;17:214–27.CrossRef Chen CH, Muzic Jr RF, Nelson AD, Adler LP. A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. Med Imaging IEEE Trans. 1998;17:214–27.CrossRef
43.
go back to reference Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol. 1998;43:1679–93.PubMedCrossRef Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol. 1998;43:1679–93.PubMedCrossRef
44.
go back to reference Pretorius PH, King MA. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys. 2009;36:105–15.PubMedCrossRef Pretorius PH, King MA. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys. 2009;36:105–15.PubMedCrossRef
45.
go back to reference Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH. Absolute quantification of regional myocardial uptake of 99mTc-Sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med. 2001;42:772–9.PubMed Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH. Absolute quantification of regional myocardial uptake of 99mTc-Sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med. 2001;42:772–9.PubMed
46.
go back to reference Tang HR, Brown JK, Hasegawa BH. Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. Nuclear Science Symposium, 1996 Conference Record, 1996 IEEE. 1996;3:1840–44. Tang HR, Brown JK, Hasegawa BH. Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. Nuclear Science Symposium, 1996 Conference Record, 1996 IEEE. 1996;3:1840–44.
47.
go back to reference Rousset O, Ma Y, Kamber M, Evans AC. 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph. 1993;17:373–9.PubMedCrossRef Rousset O, Ma Y, Kamber M, Evans AC. 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph. 1993;17:373–9.PubMedCrossRef
48.
go back to reference Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.PubMed Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.PubMed
49.
go back to reference Du Y, Tsui BM, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. Med Imaging IEEE Trans. 2005;24:969–76.CrossRef Du Y, Tsui BM, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. Med Imaging IEEE Trans. 2005;24:969–76.CrossRef
50.
go back to reference Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med. 2003;44:1184–93.PubMed Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med. 2003;44:1184–93.PubMed
51.
go back to reference National Electrical Manufacturers Association. Performance measurements of gamma cameras. NEMA NU 1–2007. Rosslyn, VA: National Electrical Manufacturers Association. 2007. National Electrical Manufacturers Association. Performance measurements of gamma cameras. NEMA NU 1–2007. Rosslyn, VA: National Electrical Manufacturers Association. 2007.
52.
go back to reference Dewaraja Y, Ljungberg M, Koral K. Effects of dead time and pile up on quantitative SPECT for I-131 dosimetric studies. J Nucl Med. 2008;49(Suppl 1):47P. Dewaraja Y, Ljungberg M, Koral K. Effects of dead time and pile up on quantitative SPECT for I-131 dosimetric studies. J Nucl Med. 2008;49(Suppl 1):47P.
53.
go back to reference Geworski L, Schaefer A, Knoop BO, Pinkert J, Plotkin M, Kirsch CM. Physikalische Aspekte szintigraphisch basierter Dosimetrie bei nuklearmedizinischen Therapien. Nuklearmedizin. 2010;49:79–123.CrossRef Geworski L, Schaefer A, Knoop BO, Pinkert J, Plotkin M, Kirsch CM. Physikalische Aspekte szintigraphisch basierter Dosimetrie bei nuklearmedizinischen Therapien. Nuklearmedizin. 2010;49:79–123.CrossRef
54.
go back to reference Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, et al. 131I-Tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62. doi:10.2967/jnumed.110.075176.PubMedCrossRef Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, et al. 131I-Tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62. doi:10.​2967/​jnumed.​110.​075176.PubMedCrossRef
55.
go back to reference Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25. doi:10.1007/s00259-009-1216-8.PubMedCrossRef Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25. doi:10.​1007/​s00259-009-1216-8.PubMedCrossRef
56.
go back to reference Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.PubMed Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.PubMed
57.
go back to reference Du Y, Tsui BM, Frey EC. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol. 2006;51:1269–82.PubMedCrossRef Du Y, Tsui BM, Frey EC. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol. 2006;51:1269–82.PubMedCrossRef
58.
go back to reference Da Silva AJ, Tang HR, Wu MC, Hasegawa BH. Absolute quantitation of myocardial activity in phantoms. Nucl Sci IEEE Trans. 1999;46:659–66.CrossRef Da Silva AJ, Tang HR, Wu MC, Hasegawa BH. Absolute quantitation of myocardial activity in phantoms. Nucl Sci IEEE Trans. 1999;46:659–66.CrossRef
59.
go back to reference Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51:921–8. doi:10.2967/jnumed.109.071571.PubMedCrossRef Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51:921–8. doi:10.​2967/​jnumed.​109.​071571.PubMedCrossRef
60.
go back to reference Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol. 2008;53:3099–112.PubMedCrossRef Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol. 2008;53:3099–112.PubMedCrossRef
61.
go back to reference Almeida P, Ribeiro MJ, Bottlaender M, Loc’h C, Langer O, Strul D, et al. Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography. Eur J Nucl Med Mol Imaging. 1999;26:1580–8. doi:10.1007/s002590050498.CrossRef Almeida P, Ribeiro MJ, Bottlaender M, Loc’h C, Langer O, Strul D, et al. Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography. Eur J Nucl Med Mol Imaging. 1999;26:1580–8. doi:10.​1007/​s002590050498.CrossRef
Metadata
Title
Absolute quantification in SPECT
Authors
Philipp Ritt
Hans Vija
Joachim Hornegger
Torsten Kuwert
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1770-8

Other articles of this Special Issue 1/2011

European Journal of Nuclear Medicine and Molecular Imaging 1/2011 Go to the issue