Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 11/2010

01-11-2010 | Original Article

Reduced dimethylaminoethanol in [18F]fluoromethylcholine: an important step towards enhanced tumour visualization

Authors: Dominique Slaets, Sylvie De Bruyne, Caroline Dumolyn, Lieselotte Moerman, Koen Mertens, Filip De Vos

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 11/2010

Login to get access

Abstract

Purpose

[18F]Fluoromethylcholine ([18F]FCho) is a radiotracer generally used for tumour visualization in patients. Due to high levels of dimethylaminoethanol (DMAE) remaining in [18F]FCho solutions synthesized by currently available methods, tumour visualization might be compromised.

Methods

An improved purification method involving an optimized purification step for reducing the levels of DMAE was conceived. The physiological explanation for the interference of residual DMAE in [18F]FCho pharmacokinetics was further elaborated in a xenograft mouse model.

Results

The use of a series of polymer solid-phase extraction cartridges (Oasis HLB/WCX), instead of the commonly used combination of tC18 and Accell CM cartridges, reduced DMAE levels from 402.2±49.6 ppm to 3.0±0.5 ppm. Subsequent in vitro tests proved that (1) [18F]FCho uptake was reduced in the presence of DMAE at concentrations above 0.5 µM and (2) DMAE is a competitive inhibitor of [18F]FCho transport. In vivo experiments in xenograft mouse models corroborated reduced tumour uptake at DMAE plasma levels of about 2.5 µM as found in patients injected with contaminated [18F]FCho.

Conclusion

Residual DMAE, even at levels below choline plasma concentrations found during fasting, compromises [18F]FCho uptake in vivo and care should be taken to avoid its interference in molecular imaging with [18F]FCho.
Literature
1.
go back to reference Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 2007;120:1721–30.CrossRefPubMed Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 2007;120:1721–30.CrossRefPubMed
2.
go back to reference Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 2006;6:821–9.CrossRefPubMed Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 2006;6:821–9.CrossRefPubMed
3.
go back to reference DeGrado TR, Baldwin SW, Wang SY, et al. Synthesis and evaluation of F-18-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–14.PubMed DeGrado TR, Baldwin SW, Wang SY, et al. Synthesis and evaluation of F-18-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–14.PubMed
4.
go back to reference Contractor KB, Kenny LM, Stebbing J, et al. [C-11]Choline positron emission tomography in estrogen receptor-positive breast cancer. Clin Cancer Res 2009;15:5503–10.CrossRefPubMed Contractor KB, Kenny LM, Stebbing J, et al. [C-11]Choline positron emission tomography in estrogen receptor-positive breast cancer. Clin Cancer Res 2009;15:5503–10.CrossRefPubMed
5.
go back to reference DeGrado TR, Coleman RE, Wang SY, et al. Synthesis and evaluation of F-18-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–7.PubMed DeGrado TR, Coleman RE, Wang SY, et al. Synthesis and evaluation of F-18-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–7.PubMed
6.
go back to reference Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-C-11]choline. J Nucl Med 1997;38:842–7.PubMed Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-C-11]choline. J Nucl Med 1997;38:842–7.PubMed
7.
go back to reference Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of hepatocellular carcinoma using C-11-choline PET: comparison with F-18-FDG PET. J Nucl Med 2008;49:1245–8.CrossRefPubMed Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of hepatocellular carcinoma using C-11-choline PET: comparison with F-18-FDG PET. J Nucl Med 2008;49:1245–8.CrossRefPubMed
8.
go back to reference Zheng QH, Gardner TA, Raikwar S, et al. [C-11]Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 2004;12:2887–93.CrossRefPubMed Zheng QH, Gardner TA, Raikwar S, et al. [C-11]Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 2004;12:2887–93.CrossRefPubMed
9.
go back to reference Hara T. F-18-fluorocholine: a new PET tracer. J Nucl Med 2001;42:1815–7.PubMed Hara T. F-18-fluorocholine: a new PET tracer. J Nucl Med 2001;42:1815–7.PubMed
10.
go back to reference Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L. Fully automated [F-18]fluorocholine synthesis in the TracerLab MXFDG Coincidence synthesizer. Nucl Med Biol 2008;35:255–60.CrossRefPubMed Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L. Fully automated [F-18]fluorocholine synthesis in the TracerLab MXFDG Coincidence synthesizer. Nucl Med Biol 2008;35:255–60.CrossRefPubMed
11.
go back to reference Mintz A, Wang LM, Ponde DE. Comparison of radiolabeled choline and ethanolamine as probe for cancer detection. Cancer Biol Ther 2008;7:742–7.PubMed Mintz A, Wang LM, Ponde DE. Comparison of radiolabeled choline and ethanolamine as probe for cancer detection. Cancer Biol Ther 2008;7:742–7.PubMed
12.
go back to reference Cornford EM, Braun LD, Oldendorf WH. Carrier mediated blood-brain-barrier transport of choline and certain choline analogs. J Neurochem 1978;30:299–308.CrossRefPubMed Cornford EM, Braun LD, Oldendorf WH. Carrier mediated blood-brain-barrier transport of choline and certain choline analogs. J Neurochem 1978;30:299–308.CrossRefPubMed
13.
go back to reference Dodia C, Fisher AB, Chander A, Kleinzeller A. Inhibitors of choline transport in alveolar type-II epithelial-cells. Am J Respir Cell Mol Biol 1992;6:426–9.PubMed Dodia C, Fisher AB, Chander A, Kleinzeller A. Inhibitors of choline transport in alveolar type-II epithelial-cells. Am J Respir Cell Mol Biol 1992;6:426–9.PubMed
14.
go back to reference Yavin E. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture: ontogenesis of carrier-specific transport of choline and N-methyl-substituted choline analogs. J Neurochem 1980;34:178–83.CrossRefPubMed Yavin E. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture: ontogenesis of carrier-specific transport of choline and N-methyl-substituted choline analogs. J Neurochem 1980;34:178–83.CrossRefPubMed
15.
go back to reference Kwee S, Turner H, Lim J, Wakano C, Coel M. Dimethylaminoethanol reduces 18F-fluoroethylcholine uptake in prostate cancer cells (abstract). J Nucl Med 2006;47 Suppl 1:425P. Kwee S, Turner H, Lim J, Wakano C, Coel M. Dimethylaminoethanol reduces 18F-fluoroethylcholine uptake in prostate cancer cells (abstract). J Nucl Med 2006;47 Suppl 1:425P.
16.
go back to reference Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K. [F-18]Fluoromethyl triflate, a novel and reactive [F-18]fluoromethylating agent: preparation and application to the on-column preparation of [F-18]fluorocholine. Appl Radiat Isot 2002;57:347–52.CrossRefPubMed Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K. [F-18]Fluoromethyl triflate, a novel and reactive [F-18]fluoromethylating agent: preparation and application to the on-column preparation of [F-18]fluorocholine. Appl Radiat Isot 2002;57:347–52.CrossRefPubMed
17.
go back to reference Fludeoxyglucose [18F] injection. European Pharmacopoeia. 5 edition, volume 1. Strasbourg, France: European Directorate for the Quality of Medicines; 2004. p. 822–5. Fludeoxyglucose [18F] injection. European Pharmacopoeia. 5 edition, volume 1. Strasbourg, France: European Directorate for the Quality of Medicines; 2004. p. 822–5.
18.
go back to reference Reischl G, Bieg C, Schmiedl O, Solbach C, Machulla HJ. Highly efficient automated synthesis of [C-11]choline for multi dose utilization. Appl Radiat Isot 2004;60:835–8.CrossRefPubMed Reischl G, Bieg C, Schmiedl O, Solbach C, Machulla HJ. Highly efficient automated synthesis of [C-11]choline for multi dose utilization. Appl Radiat Isot 2004;60:835–8.CrossRefPubMed
19.
go back to reference Hara T, Yuasa M. Automated synthesis of [C-11]choline, a positron-emitting tracer for tumor imaging. Appl Radiat Isot 1999;50:531–3.CrossRefPubMed Hara T, Yuasa M. Automated synthesis of [C-11]choline, a positron-emitting tracer for tumor imaging. Appl Radiat Isot 1999;50:531–3.CrossRefPubMed
20.
go back to reference Zhang JM, Tian JH, Wang WS, Liu BL. A new technique for labeling of [C-11]-choline, a positron-emitting tracer for tumor imaging. J Radioanal Nucl Chem 2006;267:665–8.CrossRef Zhang JM, Tian JH, Wang WS, Liu BL. A new technique for labeling of [C-11]-choline, a positron-emitting tracer for tumor imaging. J Radioanal Nucl Chem 2006;267:665–8.CrossRef
21.
go back to reference DeGrado TR. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002;43:92–6.PubMed DeGrado TR. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002;43:92–6.PubMed
23.
go back to reference Michel V, Yuan ZF, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med 2006;231:490–504. Michel V, Yuan ZF, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med 2006;231:490–504.
24.
go back to reference Wang T, Li JJ, Chen F, et al. Choline transporters in human lung adenocarcinoma: expression and functional implications. Acta Biochim Biophys Sin 2007;39:668–74.CrossRefPubMed Wang T, Li JJ, Chen F, et al. Choline transporters in human lung adenocarcinoma: expression and functional implications. Acta Biochim Biophys Sin 2007;39:668–74.CrossRefPubMed
25.
go back to reference Kouji H, Inazua M, Yamada T, Tajima H, Aoki T, Matsumiya T. Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch Biochem Biophys 2009;483:90–8.CrossRefPubMed Kouji H, Inazua M, Yamada T, Tajima H, Aoki T, Matsumiya T. Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch Biochem Biophys 2009;483:90–8.CrossRefPubMed
26.
go back to reference Koepsell H, Lips K, Volk C. Polyspecific cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227–51.CrossRefPubMed Koepsell H, Lips K, Volk C. Polyspecific cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227–51.CrossRefPubMed
28.
go back to reference Rosen MA, Jones RM, Yano Y, Budinger TF. Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol. J Nucl Med 1985;26:1424–8.PubMed Rosen MA, Jones RM, Yano Y, Budinger TF. Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol. J Nucl Med 1985;26:1424–8.PubMed
Metadata
Title
Reduced dimethylaminoethanol in [18F]fluoromethylcholine: an important step towards enhanced tumour visualization
Authors
Dominique Slaets
Sylvie De Bruyne
Caroline Dumolyn
Lieselotte Moerman
Koen Mertens
Filip De Vos
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 11/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1508-z

Other articles of this Issue 11/2010

European Journal of Nuclear Medicine and Molecular Imaging 11/2010 Go to the issue