Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2010

01-06-2010 | Guidelines

EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry

Authors: Cecilia Hindorf, Gerhard Glatting, Carlo Chiesa, Ola Lindén, Glenn Flux

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2010

Login to get access

Abstract

Introduction

The level of administered activity in radionuclide therapy is often limited by haematological toxicity resulting from the absorbed dose delivered to the bone marrow. The purpose of these EANM guidelines is to provide advice to scientists and clinicians on data acquisition and data analysis related to bone-marrow and whole-body dosimetry.

Materials and methods

The guidelines are divided into sections “Data acquisition” and “Data analysis”. The Data acquisition section provides advice on the measurements required for accurate dosimetry including blood samples, quantitative imaging and/or whole-body measurements with a single probe. Issues specific to given radiopharmaceuticals are considered. The Data analysis section provides advice on the calculation of absorbed doses to the whole body and the bone marrow. The total absorbed dose to the bone marrow consists of contributions from activity in the bone marrow itself (self-absorbed dose) and the cross-absorbed dose to the bone marrow from activity in bone, larger organs and the remainder of the body.

Conclusion

As radionuclide therapy enters an era where patient-specific dosimetry is used to guide treatments, accurate bone-marrow and whole-body dosimetry will become an essential element of treatment planning. We hope that these guidelines will provide a basis for the optimization and standardization of the treatment of cancer with radiopharmaceuticals, which will facilitate single- and multi-centre radionuclide therapy studies.
Literature
1.
go back to reference Wahl RL, Zasadny K, MacFarlane D, et al. Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan Phase I experience. J Nucl Med 1998;39(8 Suppl):21S–7S.PubMed Wahl RL, Zasadny K, MacFarlane D, et al. Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan Phase I experience. J Nucl Med 1998;39(8 Suppl):21S–7S.PubMed
2.
go back to reference Shen S, Meredith RF, Duan J, et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 2002;43(9):1245–53.PubMed Shen S, Meredith RF, Duan J, et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 2002;43(9):1245–53.PubMed
3.
go back to reference Wessels BW, Bolch WE, Bouchet LG, et al. Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 2004;45(10):1725–33.PubMed Wessels BW, Bolch WE, Bouchet LG, et al. Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 2004;45(10):1725–33.PubMed
4.
go back to reference Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 2009;36(7):1138–46.PubMedCrossRef Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 2009;36(7):1138–46.PubMedCrossRef
5.
go back to reference Breitz HB, Fisher DR, Wessels BW. Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monoclonal antibody. J Nucl Med 1998;39(10):1746–51.PubMed Breitz HB, Fisher DR, Wessels BW. Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monoclonal antibody. J Nucl Med 1998;39(10):1746–51.PubMed
6.
go back to reference Shen S, Meredith RF, Duan J, et al. Comparison of methods for predicting myelotoxicity for non-marrow targeting I-131-antibody therapy. Cancer Biother Radiopharm 2003;18(2):209–15.PubMedCrossRef Shen S, Meredith RF, Duan J, et al. Comparison of methods for predicting myelotoxicity for non-marrow targeting I-131-antibody therapy. Cancer Biother Radiopharm 2003;18(2):209–15.PubMedCrossRef
7.
go back to reference O'Donoghue JA, Baidoo N, Deland D, et al. Hematologic toxicity in radioimmunotherapy: Dose-response relationships for 131-I labeled antibody therapy. Cancer Biother Radiopharm 2002;17(4):435–43.PubMedCrossRef O'Donoghue JA, Baidoo N, Deland D, et al. Hematologic toxicity in radioimmunotherapy: Dose-response relationships for 131-I labeled antibody therapy. Cancer Biother Radiopharm 2002;17(4):435–43.PubMedCrossRef
8.
go back to reference Behr T, Béhé M, Sgouros G. Correlation of red marrow radiation dosimetry with myelotoxicity: Empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 2002;17(4):445–64.PubMedCrossRef Behr T, Béhé M, Sgouros G. Correlation of red marrow radiation dosimetry with myelotoxicity: Empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 2002;17(4):445–64.PubMedCrossRef
9.
go back to reference Hindorf C, Lindén O, Tennvall J, et al. Evaluation of methods for red marrow dosimetry based on patients undergoing radioimmunotherapy. Acta Oncol 2005;44:579–88.PubMedCrossRef Hindorf C, Lindén O, Tennvall J, et al. Evaluation of methods for red marrow dosimetry based on patients undergoing radioimmunotherapy. Acta Oncol 2005;44:579–88.PubMedCrossRef
10.
go back to reference Lindén O, Tennvall J, Hindorf C, et al. 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematologic toxicity and absorbed dose to bone marrow. Acta Oncol 2002;41(3):297–303.PubMedCrossRef Lindén O, Tennvall J, Hindorf C, et al. 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematologic toxicity and absorbed dose to bone marrow. Acta Oncol 2002;41(3):297–303.PubMedCrossRef
11.
go back to reference International Commission on Radiological Protection, Basic anatomical and physiological data for use in radiological protection: the skeleton. 1995, Pergamon: Oxford, UK International Commission on Radiological Protection, Basic anatomical and physiological data for use in radiological protection: the skeleton. 1995, Pergamon: Oxford, UK
12.
go back to reference International Commission on Radiological Protection, Basic anatomical and physiological data for use in radiological protection: reference values. 2002, Pergamon: Oxford, UK International Commission on Radiological Protection, Basic anatomical and physiological data for use in radiological protection: reference values. 2002, Pergamon: Oxford, UK
13.
go back to reference Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol 1981;26(3):389–400.PubMedCrossRef Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol 1981;26(3):389–400.PubMedCrossRef
14.
go back to reference Bradley EW. Bone marrow physiology and radiobiology. Antibody Immunoconjug Radiopharm 1990;3(4):289–91. Bradley EW. Bone marrow physiology and radiobiology. Antibody Immunoconjug Radiopharm 1990;3(4):289–91.
15.
go back to reference Fliedner TM, Graessle D, Paulsen C, et al. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 2002;17(4):405–26.PubMedCrossRef Fliedner TM, Graessle D, Paulsen C, et al. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 2002;17(4):405–26.PubMedCrossRef
16.
go back to reference Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York: The Society of Nuclear Medicine; 1991. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York: The Society of Nuclear Medicine; 1991.
17.
go back to reference Siegel JA, Thomas SR, Stubbs JB, et al. MIRD Pamphlet No 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40(2):37s–61s.PubMed Siegel JA, Thomas SR, Stubbs JB, et al. MIRD Pamphlet No 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40(2):37s–61s.PubMed
18.
go back to reference Chittenden S, Pratt BE, Pomeroy K, et al. Optimization of equipment and methodology for whole body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer Biother Radiopharm 2007;22(2):243–9.PubMedCrossRef Chittenden S, Pratt BE, Pomeroy K, et al. Optimization of equipment and methodology for whole body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer Biother Radiopharm 2007;22(2):243–9.PubMedCrossRef
19.
go back to reference He B, Wahl RL, Du Y, et al. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning – Monte Carlo simulation studies. IEEE Trans Med Imaging 2008;27(4):521–30.PubMedCrossRef He B, Wahl RL, Du Y, et al. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning – Monte Carlo simulation studies. IEEE Trans Med Imaging 2008;27(4):521–30.PubMedCrossRef
20.
go back to reference Koral K, Dewaraja Y, Li J, et al. Initial results for hybrid SPECT – conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 2000;41(9):1579–86.PubMed Koral K, Dewaraja Y, Li J, et al. Initial results for hybrid SPECT – conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 2000;41(9):1579–86.PubMed
21.
go back to reference Sgouros G, Kolbert K, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72.PubMed Sgouros G, Kolbert K, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72.PubMed
22.
go back to reference Hobbs RF, Wahl RL, Lodge MA, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 2009;50(11):1844–7.PubMedCrossRef Hobbs RF, Wahl RL, Lodge MA, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 2009;50(11):1844–7.PubMedCrossRef
23.
go back to reference Perk LR, Visser OJ, Stigter-van Walsum M, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33:1337–45.PubMedCrossRef Perk LR, Visser OJ, Stigter-van Walsum M, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33:1337–45.PubMedCrossRef
24.
go back to reference Ogawa K, Harata Y, Ichihara T, et al. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10(3):408–12.PubMedCrossRef Ogawa K, Harata Y, Ichihara T, et al. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10(3):408–12.PubMedCrossRef
25.
go back to reference Macey DJ, Grant EJ, Bayouth JE, et al. Improved conjugate view quantitation of I-131 by subtraction of scatter and septal penetration events with a triple energy window method. Med Phys 1995;22(10):1637–43.PubMedCrossRef Macey DJ, Grant EJ, Bayouth JE, et al. Improved conjugate view quantitation of I-131 by subtraction of scatter and septal penetration events with a triple energy window method. Med Phys 1995;22(10):1637–43.PubMedCrossRef
26.
go back to reference Fleming JS. A technique for the measurement of activity using a gamma camera and computer. Phys Med Biol 1979;24(1):176–80.PubMedCrossRef Fleming JS. A technique for the measurement of activity using a gamma camera and computer. Phys Med Biol 1979;24(1):176–80.PubMedCrossRef
27.
go back to reference Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys 1976;3(4):253–5.CrossRef Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys 1976;3(4):253–5.CrossRef
28.
go back to reference Siegel JA, Lee RE, Pawlyk DA, et al. Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Nucl Med Biol 1989;16(6):553–9. Siegel JA, Lee RE, Pawlyk DA, et al. Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Nucl Med Biol 1989;16(6):553–9.
29.
go back to reference Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638–43.CrossRef Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638–43.CrossRef
30.
go back to reference Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113–22.PubMedCrossRef Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113–22.PubMedCrossRef
31.
go back to reference Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comp Assist Tomogr 1984;8:306–16. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comp Assist Tomogr 1984;8:306–16.
32.
go back to reference Stabin MG, Siegel JA, Sparks RB. Sensitivity of model-based calculations of red marrow dosimetry to changes in patient-specific parameters. Cancer Biother Radiopharm 2002;17(5):535–43.PubMedCrossRef Stabin MG, Siegel JA, Sparks RB. Sensitivity of model-based calculations of red marrow dosimetry to changes in patient-specific parameters. Cancer Biother Radiopharm 2002;17(5):535–43.PubMedCrossRef
33.
go back to reference Bolch WE, Patton PW, Shah AP, et al. Considerations of anthropomorphic, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values. Med Phys 2002;29:1054–70.PubMedCrossRef Bolch WE, Patton PW, Shah AP, et al. Considerations of anthropomorphic, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values. Med Phys 2002;29:1054–70.PubMedCrossRef
34.
go back to reference Brindle JM, Myers SL, Bolch WE. Correlations of total pelvic spongiosa volume with both anthropometric parameters and computed tomography-based skeletal size measurements. Cancer Biother Radiopharm 2006;21(4):352–63.PubMedCrossRef Brindle JM, Myers SL, Bolch WE. Correlations of total pelvic spongiosa volume with both anthropometric parameters and computed tomography-based skeletal size measurements. Cancer Biother Radiopharm 2006;21(4):352–63.PubMedCrossRef
35.
go back to reference Brindle JM, Trindade AA, Shah AP, et al. Linear regression model for predicting patient-specific total skeletal spongiosa volume for use in molecular radiotherapy dosimetry. J Nucl Med 2006;47(11):1875–83.PubMed Brindle JM, Trindade AA, Shah AP, et al. Linear regression model for predicting patient-specific total skeletal spongiosa volume for use in molecular radiotherapy dosimetry. J Nucl Med 2006;47(11):1875–83.PubMed
36.
go back to reference Pichardo JC, Trindade AA, Brindle JM, et al. Method for estimating skeletal spongiosa volume and active marrow mass in the adult male and adult female. J Nucl Med 2007;48(11):1880–8.PubMedCrossRef Pichardo JC, Trindade AA, Brindle JM, et al. Method for estimating skeletal spongiosa volume and active marrow mass in the adult male and adult female. J Nucl Med 2007;48(11):1880–8.PubMedCrossRef
37.
go back to reference Bolch WE, Eckerman KF, Sgouros G, et al. MIRD Pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J Nucl Med 2009;50(3):477–84.PubMedCrossRef Bolch WE, Eckerman KF, Sgouros G, et al. MIRD Pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J Nucl Med 2009;50(3):477–84.PubMedCrossRef
38.
go back to reference Glatting G, Kletting P, Reske SN, et al. Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test. Med Phys 2007;34(11):4285–92.PubMedCrossRef Glatting G, Kletting P, Reske SN, et al. Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test. Med Phys 2007;34(11):4285–92.PubMedCrossRef
39.
go back to reference Snyder WS, Ford MR, Warner GG, et al. “S”, absorbed dose per unit cumulated activity for selected radionuclides and organs. New York: The Society of Nuclear Medicine; 1975. Snyder WS, Ford MR, Warner GG, et al. “S”, absorbed dose per unit cumulated activity for selected radionuclides and organs. New York: The Society of Nuclear Medicine; 1975.
40.
go back to reference ICRP Publication 30, Part 1, Limits for intakes of radionuclides by workers. Ottawa: International Commission on Radiological Protection. 1980 ICRP Publication 30, Part 1, Limits for intakes of radionuclides by workers. Ottawa: International Commission on Radiological Protection. 1980
41.
go back to reference Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37(3):538–46.PubMed Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37(3):538–46.PubMed
42.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46(6):1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46(6):1023–7.PubMed
43.
go back to reference Beddoe AH, Darley PJ, Spiers FW. Measurements of trabecular bone structure in man. Phys Med Biol 1976;21(4):589–607.PubMedCrossRef Beddoe AH, Darley PJ, Spiers FW. Measurements of trabecular bone structure in man. Phys Med Biol 1976;21(4):589–607.PubMedCrossRef
44.
go back to reference Beddoe AH. Measurements of the microscopic structure of cortical bone. Phys Med Biol 1977;22(2):298–308.PubMedCrossRef Beddoe AH. Measurements of the microscopic structure of cortical bone. Phys Med Biol 1977;22(2):298–308.PubMedCrossRef
45.
go back to reference Whitwell JR, Spiers FW. Calculated beta-ray dose factors for trabecular bone. Phys Med Biol 1976;21(1):16–38.PubMedCrossRef Whitwell JR, Spiers FW. Calculated beta-ray dose factors for trabecular bone. Phys Med Biol 1976;21(1):16–38.PubMedCrossRef
46.
go back to reference Eckerman KF, Stabin MG. Electron absorbed fractions and dose conversion factors for red marrow and bone by skeletal regions. Health Phys 2000;78(2):199–214.PubMedCrossRef Eckerman KF, Stabin MG. Electron absorbed fractions and dose conversion factors for red marrow and bone by skeletal regions. Health Phys 2000;78(2):199–214.PubMedCrossRef
47.
go back to reference Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003;85(3):294–310.PubMedCrossRef Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003;85(3):294–310.PubMedCrossRef
48.
go back to reference Bouchet LG, Bolch WE. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone. J Nucl Med 1999;40(12):2115–24.PubMed Bouchet LG, Bolch WE. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone. J Nucl Med 1999;40(12):2115–24.PubMed
49.
go back to reference Bouchet LG, Jokisch DW, Bolch WE. A three-dimensional transport model for determining absorberd fractions of energy for electrons within trabecular bone. J Nucl Med 1999;40(11):1947–66.PubMed Bouchet LG, Jokisch DW, Bolch WE. A three-dimensional transport model for determining absorberd fractions of energy for electrons within trabecular bone. J Nucl Med 1999;40(11):1947–66.PubMed
50.
go back to reference Bouchet LG, Bolch WE, Howell RW, et al. S values for radionuclides localized within the skeleton. J Nucl Med 2000;41(1):189–212.PubMed Bouchet LG, Bolch WE, Howell RW, et al. S values for radionuclides localized within the skeleton. J Nucl Med 2000;41(1):189–212.PubMed
51.
go back to reference Watchman CJ, Jokisch DW, Patton PW, et al. Absorbed fractions for alpha-particles in tissues of trabecular bone: considerations of marrow cellularity within the ICRP reference male. J Nucl Med 2005;46(7):1171–85.PubMed Watchman CJ, Jokisch DW, Patton PW, et al. Absorbed fractions for alpha-particles in tissues of trabecular bone: considerations of marrow cellularity within the ICRP reference male. J Nucl Med 2005;46(7):1171–85.PubMed
52.
go back to reference Stabin MG, Eckerman KF, Bolch WE, et al. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm 2002;17(4):427–33.PubMedCrossRef Stabin MG, Eckerman KF, Bolch WE, et al. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm 2002;17(4):427–33.PubMedCrossRef
53.
go back to reference Sgouros G, Stabin M, Erdi Y, et al. Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys 2000;27(9):2150–64.PubMedCrossRef Sgouros G, Stabin M, Erdi Y, et al. Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys 2000;27(9):2150–64.PubMedCrossRef
54.
go back to reference Shah AP, Bolch WE, Rajon DA, et al. A paired-image radiation transport model for skeletal dosimetry. J Nucl Med 2005;46(2):344–53.PubMed Shah AP, Bolch WE, Rajon DA, et al. A paired-image radiation transport model for skeletal dosimetry. J Nucl Med 2005;46(2):344–53.PubMed
55.
go back to reference Petoussi-Henss N, Bolch WE, Zankl M, et al. Patient-specific scaling of reference S-values for cross-organ radionuclide S-values: What is appropriate? Radiat Prot Dosim 2007;127:192–6.CrossRef Petoussi-Henss N, Bolch WE, Zankl M, et al. Patient-specific scaling of reference S-values for cross-organ radionuclide S-values: What is appropriate? Radiat Prot Dosim 2007;127:192–6.CrossRef
56.
go back to reference Shen S, DeNardo GL, Sgouros G, et al. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40(12):2102–6.PubMed Shen S, DeNardo GL, Sgouros G, et al. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40(12):2102–6.PubMed
57.
go back to reference Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34(4):689–94.PubMed Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34(4):689–94.PubMed
58.
go back to reference Siegel JA, Wessels BW, Watson EE, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconjug Radiopharm 1990;3(4):213–33. Siegel JA, Wessels BW, Watson EE, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconjug Radiopharm 1990;3(4):213–33.
59.
go back to reference Sgouros G. Blood and bone marrow dosimetry in radioiodine therapy of thyroid cancer. J Nucl Med 2005;46(5):899–900.PubMed Sgouros G. Blood and bone marrow dosimetry in radioiodine therapy of thyroid cancer. J Nucl Med 2005;46(5):899–900.PubMed
60.
go back to reference Hindorf C, Lindén O, Tennvall J, et al. Time dependence of activity concentration ratio of red marrow to blood and implications for red marrow dosimetry. Cancer 2002;94(4 suppl):1235–9.PubMedCrossRef Hindorf C, Lindén O, Tennvall J, et al. Time dependence of activity concentration ratio of red marrow to blood and implications for red marrow dosimetry. Cancer 2002;94(4 suppl):1235–9.PubMedCrossRef
61.
go back to reference Sgouros G, Jureidini IM, Scott AM, et al. Bone marrow dosimetry: regional variability of marrow-localizing antibody. J Nucl Med 1996;37:695–8.PubMed Sgouros G, Jureidini IM, Scott AM, et al. Bone marrow dosimetry: regional variability of marrow-localizing antibody. J Nucl Med 1996;37:695–8.PubMed
62.
go back to reference Traino AC, Ferrari M, Cremonesi M, et al. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol 2007;52:5231–48.PubMedCrossRef Traino AC, Ferrari M, Cremonesi M, et al. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol 2007;52:5231–48.PubMedCrossRef
63.
go back to reference Matthay KK, Panina C, Huberty J, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med 2001;42(11):1713–21.PubMed Matthay KK, Panina C, Huberty J, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med 2001;42(11):1713–21.PubMed
64.
go back to reference Buckley SE, Chittenden S, Saran FH, et al. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009;50(9):1518–24.PubMedCrossRef Buckley SE, Chittenden S, Saran FH, et al. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009;50(9):1518–24.PubMedCrossRef
65.
go back to reference Seldin DW. Techniques for using bexxar for the treatment of non-Hodgkin's lymphoma. J Nucl Med Technol 2002;30(3):109–14.PubMed Seldin DW. Techniques for using bexxar for the treatment of non-Hodgkin's lymphoma. J Nucl Med Technol 2002;30(3):109–14.PubMed
66.
go back to reference Divoli A, Chiavassa S, Ferrer L, et al. Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methods. J Nucl Med 2009;50(2):316–23.PubMedCrossRef Divoli A, Chiavassa S, Ferrer L, et al. Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methods. J Nucl Med 2009;50(2):316–23.PubMedCrossRef
67.
go back to reference Kwok CS. Backscattering of low energy electrons at bone/bone marrow interfaces. Antibody Immunoconjug Radiopharm 1990;3(4):251–7. Kwok CS. Backscattering of low energy electrons at bone/bone marrow interfaces. Antibody Immunoconjug Radiopharm 1990;3(4):251–7.
68.
go back to reference Kwok CS, Bialobzyski PJ, Yu SK. Effect of tissue inhomogneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies. Med Phys 1991;18(3):533–41.PubMedCrossRef Kwok CS, Bialobzyski PJ, Yu SK. Effect of tissue inhomogneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies. Med Phys 1991;18(3):533–41.PubMedCrossRef
69.
go back to reference Watchman CJ, Bourke VA, Lyon JR, et al. Spatial distribution of blood vessels and CD34+ hematopoietic stem and progenitor cells within the marrow cavities of human cancellous bone. J Nucl Med 2007;48(4):645–54.PubMedCrossRef Watchman CJ, Bourke VA, Lyon JR, et al. Spatial distribution of blood vessels and CD34+ hematopoietic stem and progenitor cells within the marrow cavities of human cancellous bone. J Nucl Med 2007;48(4):645–54.PubMedCrossRef
70.
go back to reference Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 2007;17:743–61.PubMedCrossRef Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 2007;17:743–61.PubMedCrossRef
71.
go back to reference Beshara S, Sörensen J, Lubberink M, et al. Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography. Br J Haematol 2003;120:853–9.PubMedCrossRef Beshara S, Sörensen J, Lubberink M, et al. Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography. Br J Haematol 2003;120:853–9.PubMedCrossRef
72.
go back to reference Agool A, Schot BW, Jager PL, et al. 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 2006;47(10):1592–8.PubMed Agool A, Schot BW, Jager PL, et al. 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 2006;47(10):1592–8.PubMed
73.
go back to reference Blumenthal RD, Lew W, Juweid M, et al. Plasma FLT3-L levels predict bone marrow recovery from myelosuppressive therapy. Cancer 2000;88(2):333–43.PubMedCrossRef Blumenthal RD, Lew W, Juweid M, et al. Plasma FLT3-L levels predict bone marrow recovery from myelosuppressive therapy. Cancer 2000;88(2):333–43.PubMedCrossRef
74.
go back to reference Siegel JA, Yeldell D, Goldenberg DM, et al. Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 2003;44(1):67–76.PubMed Siegel JA, Yeldell D, Goldenberg DM, et al. Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 2003;44(1):67–76.PubMed
75.
go back to reference Bertho JM, Demarquay C, Frick J, et al. Level of flt3-level in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 2001;77(6):703–12.PubMedCrossRef Bertho JM, Demarquay C, Frick J, et al. Level of flt3-level in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 2001;77(6):703–12.PubMedCrossRef
Metadata
Title
EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry
Authors
Cecilia Hindorf
Gerhard Glatting
Carlo Chiesa
Ola Lindén
Glenn Flux
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1422-4

Other articles of this Issue 6/2010

European Journal of Nuclear Medicine and Molecular Imaging 6/2010 Go to the issue