Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2008

01-08-2008 | Original article

Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET

Authors: Hans Herzog, David Elmenhorst, Oliver Winz, Andreas Bauer

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2008

Login to get access

Abstract

Purpose

18F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (18F-CPFPX) is a potent radioligand to study human cerebral A1 adenosine receptors and their neuromodulatory and neuroprotective functions with positron emission tomography (PET). The purpose of this study was to determine the biodistribution and the radiation dose of 18F-CPFPX by whole-body scans in humans.

Methods

Six normal volunteers were examined with 12 whole-body PET scans from 1.5 min to 4.5 h after injection. Volumes of interest were defined over all visually identifiable organs, i.e. liver, gallbladder, kidneys, small intestines, heart, and brain to obtain the organs’ volumes and time-activity curves (TACs). TACs were fitted with exponential functions, extrapolated, multiplied with the physical decay and normalized to injected activities so that the residence times could be computed as area under the curve. Radiation doses were calculated using the OLINDA/EXM software for internal dose assessment in nuclear medicine.

Results

The liver uptake shows peak values (decay-corrected) of up to 35% of the injected radioactivity. About 30% is eliminated by bladder voiding. The highest radiation dose is received by the gallbladder (136.2 ± 66.1 μSv/MBq), followed by the liver (84.4 ± 10.6 μSv/MBq) and the urinary bladder (78.3 ± 7.1 μSv/MBq). The effective dose was 17.6 ± 0.5 μSv/MBq.

Conclusions

With 300 MBq of injected 18F-CPFPX a subject receives an effective dose (ICRP 60) of 5.3 mSv. Thus the effective dose of an 18F-CPFPX study is comparable to that of other 18F-labelled neuroreceptor ligands.
Literature
1.
go back to reference Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.PubMedCrossRef Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.PubMedCrossRef
2.
go back to reference Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.PubMed Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.PubMed
3.
go back to reference Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: A quantitative autoradiographic study. Neuroscience. 1987;22:827–39.PubMedCrossRef Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: A quantitative autoradiographic study. Neuroscience. 1987;22:827–39.PubMedCrossRef
4.
go back to reference Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study. Synapse. 1997;27:322–35.PubMedCrossRef Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study. Synapse. 1997;27:322–35.PubMedCrossRef
5.
go back to reference Bauer A, Holschbach MH, Meyer PT, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage. 2003;19:1760–9.PubMedCrossRef Bauer A, Holschbach MH, Meyer PT, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage. 2003;19:1760–9.PubMedCrossRef
6.
go back to reference Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:375–81.PubMedCrossRef Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:375–81.PubMedCrossRef
7.
go back to reference Bauer A, Langen KJ, Bidmon H, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med. 2005;46:450–4.PubMed Bauer A, Langen KJ, Bidmon H, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med. 2005;46:450–4.PubMed
8.
go back to reference Glass M, Faull RL, Bullock JY, et al. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res. 1996;710:56–68.PubMedCrossRef Glass M, Faull RL, Bullock JY, et al. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res. 1996;710:56–68.PubMedCrossRef
9.
go back to reference Ulas J, Brunner LC, Nguyen L, Cotman CW. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience. 1993;52:843–54.PubMedCrossRef Ulas J, Brunner LC, Nguyen L, Cotman CW. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience. 1993;52:843–54.PubMedCrossRef
10.
go back to reference Deckert J, Abel F, Kunig G, et al. Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett. 1998;244:1–4.PubMedCrossRef Deckert J, Abel F, Kunig G, et al. Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett. 1998;244:1–4.PubMedCrossRef
11.
go back to reference Holschbach MH, Fein T, Krummeich C, et al. A1 adenosine receptor antagonists as ligands for positron emission tomography (PET) and single photon emission tomography (SPET). J Med Chem. 1998;41:555–63.PubMedCrossRef Holschbach MH, Fein T, Krummeich C, et al. A1 adenosine receptor antagonists as ligands for positron emission tomography (PET) and single photon emission tomography (SPET). J Med Chem. 1998;41:555–63.PubMedCrossRef
12.
go back to reference Holschbach MH, Olsson RA, Bier D, et al. Synthesis and evaluation of no-carrieradded 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F] CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45:5150–6.PubMedCrossRef Holschbach MH, Olsson RA, Bier D, et al. Synthesis and evaluation of no-carrieradded 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F] CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45:5150–6.PubMedCrossRef
13.
go back to reference Herzog H, Boy C, Holschbach M, et al. Cerebral Kinetics of the A1 Adenosine Receptor Antagonist [18F]CPFPX Measured in Non-Human Primates. J Cereb Blood Flow Metab. 2003;23(Suppl.1):690. Herzog H, Boy C, Holschbach M, et al. Cerebral Kinetics of the A1 Adenosine Receptor Antagonist [18F]CPFPX Measured in Non-Human Primates. J Cereb Blood Flow Metab. 2003;23(Suppl.1):690.
14.
go back to reference Meyer PT, Bier D, Holschbach MH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab. 2004;24:323–33.PubMedCrossRef Meyer PT, Bier D, Holschbach MH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab. 2004;24:323–33.PubMedCrossRef
15.
go back to reference Meyer PT, Elmenhorst D, Bier D, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage. 2005;24:1192–204.PubMedCrossRef Meyer PT, Elmenhorst D, Bier D, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage. 2005;24:1192–204.PubMedCrossRef
16.
go back to reference Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse. 2005;55(4):212–23.PubMedCrossRef Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse. 2005;55(4):212–23.PubMedCrossRef
17.
go back to reference Elmenhorst D, Meyer PT, Winz OH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27:2410–5.PubMedCrossRef Elmenhorst D, Meyer PT, Winz OH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27:2410–5.PubMedCrossRef
18.
go back to reference Boy C, Meyer PT, Kircheis G, et al. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imag. (paper accepted). Boy C, Meyer PT, Kircheis G, et al. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imag. (paper accepted).
19.
go back to reference Matusch A, Meyer PT, Bier D, et al. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol. 2006;33:891–8.PubMedCrossRef Matusch A, Meyer PT, Bier D, et al. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol. 2006;33:891–8.PubMedCrossRef
20.
go back to reference Herzog H, Holschbach M, Boy C, et al. Biodistribution and radiation dose of the new A1 adenosine receptor antagonist [F-18] CPFPX in mice and baboon. J Nucl Med. 1998;39(5):188P. Herzog H, Holschbach M, Boy C, et al. Biodistribution and radiation dose of the new A1 adenosine receptor antagonist [F-18] CPFPX in mice and baboon. J Nucl Med. 1998;39(5):188P.
21.
go back to reference Brix G, Zaers J, Adam L, et al. Performance evaluation of a whole-body PET Scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.PubMed Brix G, Zaers J, Adam L, et al. Performance evaluation of a whole-body PET Scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.PubMed
22.
go back to reference Lu JQ, Ichise M, Liow JS, Ghose S, Vines D, Innis RB. Biodistribution and radiation dosimetry of the serotonin transporter ligand 11C-DASB determined from human whole-body PET. J Nucl Med. 2004;45:1555–9.PubMed Lu JQ, Ichise M, Liow JS, Ghose S, Vines D, Innis RB. Biodistribution and radiation dosimetry of the serotonin transporter ligand 11C-DASB determined from human whole-body PET. J Nucl Med. 2004;45:1555–9.PubMed
23.
go back to reference Slifstein M, Hwang DR, Martinez D, et al. Biodistribution and radiation dosimetry of the dopamine D2 ligand 11C-raclopride determined from human whole-body PET. J Nucl Med. 2006;47:313–9.PubMed Slifstein M, Hwang DR, Martinez D, et al. Biodistribution and radiation dosimetry of the dopamine D2 ligand 11C-raclopride determined from human whole-body PET. J Nucl Med. 2006;47:313–9.PubMed
24.
go back to reference Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.PubMedCrossRef Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.PubMedCrossRef
25.
go back to reference Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr. 1981;5:391–400.PubMedCrossRef Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr. 1981;5:391–400.PubMedCrossRef
26.
go back to reference International Commission on Radiological Protection. Limits for intakes of radionuclides by workers. ICRP Publication 30 Part 1 (Oxford, UK: Pergamon Press), 1979. International Commission on Radiological Protection. Limits for intakes of radionuclides by workers. ICRP Publication 30 Part 1 (Oxford, UK: Pergamon Press), 1979.
27.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
28.
go back to reference Herzog H, Zilken H, Niederbremer A, Friedrich W, Müller-Gärtner HW. Calculation of residence times and radiation doses using the standard PC-software Excel. Eur J Nucl Med. 1997;24:1514–21.PubMedCrossRef Herzog H, Zilken H, Niederbremer A, Friedrich W, Müller-Gärtner HW. Calculation of residence times and radiation doses using the standard PC-software Excel. Eur J Nucl Med. 1997;24:1514–21.PubMedCrossRef
29.
go back to reference Cloutier RJ, Smith SA, Watson EE, et al. Dose to the fetus from radionuclides in the bladder. Health Physics. 1973;25:147–61.PubMedCrossRef Cloutier RJ, Smith SA, Watson EE, et al. Dose to the fetus from radionuclides in the bladder. Health Physics. 1973;25:147–61.PubMedCrossRef
30.
go back to reference International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. New York: Pergamon Press; 1991. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. New York: Pergamon Press; 1991.
31.
go back to reference International Commission on Radiological Protection. Report of the task group on reference man. ICRP Publication 23. Oxford: Pergamon Press; 1975. International Commission on Radiological Protection. Report of the task group on reference man. ICRP Publication 23. Oxford: Pergamon Press; 1975.
32.
go back to reference Food and Drug Administration. Title 21 CFR 361.1, Radioactive Drugs for Certain Research Uses. 4–1–01 ed. Washington, DC: National Archives and Records Administration; 2001:300–305. Food and Drug Administration. Title 21 CFR 361.1, Radioactive Drugs for Certain Research Uses. 4–1–01 ed. Washington, DC: National Archives and Records Administration; 2001:300–305.
33.
go back to reference Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61S.PubMed Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61S.PubMed
34.
go back to reference Kessler RM, Mason NS, Jones C, Ansari MS, Manning RF, Price RR. [18F] N-ally-5-fluorproplepidepride (fallypride): radiation dosimetry, quantification of striatal and extrastriatal dopamine receptors in man. Neuroimage. 2000;6:S32. Kessler RM, Mason NS, Jones C, Ansari MS, Manning RF, Price RR. [18F] N-ally-5-fluorproplepidepride (fallypride): radiation dosimetry, quantification of striatal and extrastriatal dopamine receptors in man. Neuroimage. 2000;6:S32.
35.
go back to reference Herzog H, Coenen HH, Kuwert T, Langen KJ, Feinendegen LE. Quantitation of the whole-body distribution of PET radiopharmaceuticals: Applied to 3-N-([18F]fluoroethyl)spiperone. Eur J Nucl Med. 1990;16:77–83.PubMedCrossRef Herzog H, Coenen HH, Kuwert T, Langen KJ, Feinendegen LE. Quantitation of the whole-body distribution of PET radiopharmaceuticals: Applied to 3-N-([18F]fluoroethyl)spiperone. Eur J Nucl Med. 1990;16:77–83.PubMedCrossRef
Metadata
Title
Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET
Authors
Hans Herzog
David Elmenhorst
Oliver Winz
Andreas Bauer
Publication date
01-08-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0753-x

Other articles of this Issue 8/2008

European Journal of Nuclear Medicine and Molecular Imaging 8/2008 Go to the issue