Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2007

Open Access 01-09-2007 | Original Article

Accuracy of 3D acquisition mode for myocardial FDG PET studies using a BGO-based scanner

Authors: Arno P. van der Weerdt, Ronald Boellaard, Frans C. Visser, Adriaan A. Lammertsma

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2007

Login to get access

Abstract

Purpose

The aim of the present study was to evaluate the quantitative and qualitative accuracy of 3D PET acquisitions for myocardial FDG studies.

Methods

Phantom studies were performed with both a homogeneous and an inhomogeneous phantom. Activity profiles were generated along the phantoms using 2D and several 3D reconstructions, varying the 3D scaling value to adjust the scatter correction algorithm. Furthermore, ten patients underwent a dynamic myocardial FDG PET scan, using an interleaved protocol consisting of frames with alternating 2D and 3D acquisition. For each myocardial study, 13 volumes of interest were defined, representing 13 myocardial segments. First, the optimal scaling value for the scatter correction algorithm was determined using data from the phantom and four patient studies. This scaling value was then applied to all ten patients. 2D and 3D acquisitions were compared for both static (i.e. activity concentrations in the last 2D and 3D frames) and dynamic imaging (calculation of the metabolic rate of glucose).

Results

For both phantom and patient studies, suboptimal results were obtained when the default scaling value for the scatter correction algorithm was used. After adjusting the scaling value, for all ten myocardial FDG studies, a very good correlation (r 2 = 0.99) was obtained between 2D and 3D data. With the present protocol no significant differences were observed in qualitative interpretation.

Conclusion

The 3D FDG acquisition mode is accurate and has clear advantages over the 2D mode for myocardial FDG studies. A prerequisite is, however, optimisation of the 3D scatter correction algorithm.
Literature
1.
go back to reference Bailey DL. 3D acquisition and reconstruction in positron emission tomography. Ann Nucl Med 1992;6:123–30.PubMedCrossRef Bailey DL. 3D acquisition and reconstruction in positron emission tomography. Ann Nucl Med 1992;6:123–30.PubMedCrossRef
2.
go back to reference Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–78.PubMed Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–78.PubMed
3.
go back to reference Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.PubMedCrossRef Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.PubMedCrossRef
4.
go back to reference Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.PubMedCrossRef Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.PubMedCrossRef
5.
go back to reference Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8:800–8.PubMedCrossRef Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8:800–8.PubMedCrossRef
6.
go back to reference Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–53.PubMed Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–53.PubMed
7.
go back to reference Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–97.PubMed Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–97.PubMed
8.
go back to reference Bailey DL, Jones T. A method for calibrating three-dimensional positron emission tomography without scatter correction. Eur J Nucl Med 1997;24:660–4.PubMed Bailey DL, Jones T. A method for calibrating three-dimensional positron emission tomography without scatter correction. Eur J Nucl Med 1997;24:660–4.PubMed
9.
go back to reference Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996;41:1755–76.PubMedCrossRef Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996;41:1755–76.PubMedCrossRef
10.
go back to reference Zaidi H. Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 2001;22:1181–4.PubMedCrossRef Zaidi H. Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 2001;22:1181–4.PubMedCrossRef
12.
go back to reference Silbersweig DA, Stern E, Frith CD, Cahill C, Schnorr L, Grootoonk S, et al. Detection of thirty-second cognitive activations in single subjects with positron emission tomography: a new low-dose H2 15O regional cerebral blood flow three-dimensional imaging technique. J Cereb Blood Flow Metab 1993;13:617–29.PubMed Silbersweig DA, Stern E, Frith CD, Cahill C, Schnorr L, Grootoonk S, et al. Detection of thirty-second cognitive activations in single subjects with positron emission tomography: a new low-dose H2 15O regional cerebral blood flow three-dimensional imaging technique. J Cereb Blood Flow Metab 1993;13:617–29.PubMed
13.
go back to reference Dhawan V, Kazumata K, Robeson W, Belakhlef A, Margouleff C, Chaly T, et al. Quantitative brain PET. Comparison of 2D and 3D acquisitions on the GE Advance scanner. Clin Positron Imaging 1998;1:135–44.PubMedCrossRef Dhawan V, Kazumata K, Robeson W, Belakhlef A, Margouleff C, Chaly T, et al. Quantitative brain PET. Comparison of 2D and 3D acquisitions on the GE Advance scanner. Clin Positron Imaging 1998;1:135–44.PubMedCrossRef
14.
go back to reference Boecker H, Ceballos-Baumann A, Bartenstein P, Weindl A, Siebner HR, Fassbender T, et al. Sensory processing in Parkinson’s and Huntington’s disease: investigations with 3D H2 15O-PET. Brain 1999;122:1651–65.PubMedCrossRef Boecker H, Ceballos-Baumann A, Bartenstein P, Weindl A, Siebner HR, Fassbender T, et al. Sensory processing in Parkinson’s and Huntington’s disease: investigations with 3D H2 15O-PET. Brain 1999;122:1651–65.PubMedCrossRef
15.
go back to reference Knesaurek K, Machac J, Krynycki B, Almeida O. Comparison of 2-dimensional and 3-dimensional 82-Rb myocardial perfusion PET imaging. J Nucl Med 2003;44:1350–6.PubMed Knesaurek K, Machac J, Krynycki B, Almeida O. Comparison of 2-dimensional and 3-dimensional 82-Rb myocardial perfusion PET imaging. J Nucl Med 2003;44:1350–6.PubMed
16.
go back to reference Schäfers KP, Spinks TJ, Camici PG, Bloomfield PM, Rhodes CG, Law MP, et al. Absolute quantification of myocardial blood flow with H2 15O and 3-dimensional PET: an experimental validation. J Nucl Med 2002;43:1031–40.PubMed Schäfers KP, Spinks TJ, Camici PG, Bloomfield PM, Rhodes CG, Law MP, et al. Absolute quantification of myocardial blood flow with H2 15O and 3-dimensional PET: an experimental validation. J Nucl Med 2002;43:1031–40.PubMed
17.
go back to reference Votaw JR, White M. Comparison of 2-dimensional and 3-dimensional cardiac 82-Rb PET studies. J Nucl Med 2001;42:701–6.PubMed Votaw JR, White M. Comparison of 2-dimensional and 3-dimensional cardiac 82-Rb PET studies. J Nucl Med 2001;42:701–6.PubMed
18.
go back to reference Lubberink M, Boellaard R, van der Weerdt AP, Visser FC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med 2004;45:2008–15.PubMed Lubberink M, Boellaard R, van der Weerdt AP, Visser FC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med 2004;45:2008–15.PubMed
19.
go back to reference Brogsitter C, Grüning T, Weise R, Wielepp P, Lindner O, Korfer R, et al. 18F-FDG PET for detecting of myocardial viability. Validation of 3D data acquisition. J Nucl Med 2005;46:19–24.PubMed Brogsitter C, Grüning T, Weise R, Wielepp P, Lindner O, Korfer R, et al. 18F-FDG PET for detecting of myocardial viability. Validation of 3D data acquisition. J Nucl Med 2005;46:19–24.PubMed
20.
go back to reference Adam LE, Zaers J, Ostertag H, Trojan H, Belleman ME, Brix G. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci 1997;44:1172–9.CrossRef Adam LE, Zaers J, Ostertag H, Trojan H, Belleman ME, Brix G. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci 1997;44:1172–9.CrossRef
21.
go back to reference Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997;38:1614–23.PubMed Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997;38:1614–23.PubMed
22.
go back to reference Defrise M, Kinahan PE, Townsend DW, Sibomana MC, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.PubMedCrossRef Defrise M, Kinahan PE, Townsend DW, Sibomana MC, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.PubMedCrossRef
23.
go back to reference Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000;1587–94. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000;1587–94.
24.
go back to reference Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 1983;7:42–50.PubMedCrossRef Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 1983;7:42–50.PubMedCrossRef
25.
go back to reference Van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac F-18-FDG PET scans. J Nucl Med 2001;42:1622–9.PubMed Van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac F-18-FDG PET scans. J Nucl Med 2001;42:1622–9.PubMed
26.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.PubMed Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.PubMed
27.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.PubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.PubMed
28.
go back to reference Paans AMJ, Boerdijk SMM, Willemsen ATM, Pruim J. Source of impaired image quality in 3D whole-body FDG PET scanning. Eur J Nucl Med Mol Imaging 2004;31:1207.PubMedCrossRef Paans AMJ, Boerdijk SMM, Willemsen ATM, Pruim J. Source of impaired image quality in 3D whole-body FDG PET scanning. Eur J Nucl Med Mol Imaging 2004;31:1207.PubMedCrossRef
29.
go back to reference Visvikis D, Griffiths D, Costa DC, Bomanji J, Ell PJ. Clinical evaluation of 2D versus 3D whole body PET image quality using a dedicated BGO PET scanner. Eur J Nucl Med Mol Imaging 2005;32:1050–6.PubMedCrossRef Visvikis D, Griffiths D, Costa DC, Bomanji J, Ell PJ. Clinical evaluation of 2D versus 3D whole body PET image quality using a dedicated BGO PET scanner. Eur J Nucl Med Mol Imaging 2005;32:1050–6.PubMedCrossRef
30.
go back to reference Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J Nucl Med 2005;46:603–7.PubMed Halpern BS, Dahlbom M, Auerbach MA, Schiepers C, Fueger BJ, Weber WA, et al. Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J Nucl Med 2005;46:603–7.PubMed
31.
go back to reference Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for 18F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med 2006;47:23–31.PubMed Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for 18F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med 2006;47:23–31.PubMed
32.
go back to reference Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, et al. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med 2004;45(10):1734–42.PubMed Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, et al. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med 2004;45(10):1734–42.PubMed
Metadata
Title
Accuracy of 3D acquisition mode for myocardial FDG PET studies using a BGO-based scanner
Authors
Arno P. van der Weerdt
Ronald Boellaard
Frans C. Visser
Adriaan A. Lammertsma
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2007
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0367-8

Other articles of this Issue 9/2007

European Journal of Nuclear Medicine and Molecular Imaging 9/2007 Go to the issue