Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2007

01-07-2007 | Original Article

Test–retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET

Authors: David Elmenhorst, Philipp T. Meyer, Andreas Matusch, Oliver H. Winz, Karl Zilles, Andreas Bauer

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2007

Login to get access

Abstract

Purpose

The goal of the present study was to evaluate the reproducibility of cerebral A1 adenosine receptor (A1AR) quantification using [18F]CPFPX and PET in a test–retest design.

Methods

Eleven healthy volunteers were studied twice. Eight brain regions ranging from high to low receptor binding were examined. [18F]CPFPX was injected as a bolus with subsequent infusion over 120 min. Various outcome parameters were compared based on either metabolite-corrected venous blood sampling [e.g. apparent equilibrium total distribution volume (DVt′)] or a reference region [ratio of specific to non-specific distribution volume (BP2)].

Results

Test–retest variability was low in the outcome measure BP2 (on average 5.9%) and moderate in DVt′ (on average 13.2%). Regarding reproducibility, the outcome parameter BP2 showed an intra-class correlation coefficient (ICC) of 0.94 ± 0.1. For DVt′ the between-subject coefficient of variation (%CV) was similar to the within-subject %CV (around 10%), resulting in a poor ICC of 0.06 ± 0.2.

Conclusion

Our results suggest that quantification of [18F]CPFPX imaging is reproducible and reliable for PET studies of the cerebral A1AR. Among the outcome parameters the non-invasive measures were of superior test–retest stability over the invasive.
Literature
1.
go back to reference Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005;63:191–270.PubMedCrossRef Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005;63:191–270.PubMedCrossRef
3.
go back to reference Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 2000;362:375–81.PubMedCrossRef Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 2000;362:375–81.PubMedCrossRef
4.
go back to reference Ribeiro JA, Sebastiao AM, de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 2002;68:377–92.PubMedCrossRef Ribeiro JA, Sebastiao AM, de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 2002;68:377–92.PubMedCrossRef
5.
go back to reference Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002;45:5150–6.PubMedCrossRef Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002;45:5150–6.PubMedCrossRef
6.
go back to reference Bauer A, Holschbach MH, Cremer M, Weber S, Boy C, Shah NJ, et al. Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. J Nucl Med 2003;44:1682–9.PubMed Bauer A, Holschbach MH, Cremer M, Weber S, Boy C, Shah NJ, et al. Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. J Nucl Med 2003;44:1682–9.PubMed
7.
go back to reference Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, et al. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 1997;24:53–9.PubMedCrossRef Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, et al. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 1997;24:53–9.PubMedCrossRef
8.
go back to reference Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 2004;24:323–33.PubMedCrossRef Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 2004;24:323–33.PubMedCrossRef
9.
go back to reference Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 2005;24:1192–204.PubMedCrossRef Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 2005;24:1192–204.PubMedCrossRef
10.
go back to reference Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 2005;46:450–4.PubMed Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 2005;46:450–4.PubMed
11.
go back to reference Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 2005;55:212–23.PubMedCrossRef Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 2005;55:212–23.PubMedCrossRef
12.
go back to reference Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol 2002;40:1231–4.PubMedCrossRef Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol 2002;40:1231–4.PubMedCrossRef
13.
go back to reference Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 2000;20:225–43.PubMedCrossRef Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 2000;20:225–43.PubMedCrossRef
14.
go back to reference Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–27.PubMedCrossRef Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–27.PubMedCrossRef
15.
go back to reference Laruelle M, van Dyck C, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS, et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J Nucl Med 1994;35:743–54.PubMed Laruelle M, van Dyck C, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS, et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J Nucl Med 1994;35:743–54.PubMed
16.
go back to reference Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834–40.PubMedCrossRef Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834–40.PubMedCrossRef
17.
go back to reference Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience 1987;22:827–39.PubMedCrossRef Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience 1987;22:827–39.PubMedCrossRef
18.
go back to reference Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.PubMedCrossRef Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.PubMedCrossRef
19.
go back to reference Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003;19:1760–9.PubMedCrossRef Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003;19:1760–9.PubMedCrossRef
20.
go back to reference Litton JE, Hall H, Pauli S. Saturation analysis in PET-analysis of errors due to imperfect reference regions. J Cereb Blood Flow Metab 1994;14:358–61.PubMed Litton JE, Hall H, Pauli S. Saturation analysis in PET-analysis of errors due to imperfect reference regions. J Cereb Blood Flow Metab 1994;14:358–61.PubMed
21.
go back to reference Millet P, Graf C, Buck A, Walder B, Ibanez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage 2002;17:928–42.PubMedCrossRef Millet P, Graf C, Buck A, Walder B, Ibanez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage 2002;17:928–42.PubMedCrossRef
22.
go back to reference Meyer PT, Elmenhorst D, Holschbach MH, Bier D, Matusch A, Winz OH, et al. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 2006; 32:1100–5.PubMedCrossRef Meyer PT, Elmenhorst D, Holschbach MH, Bier D, Matusch A, Winz OH, et al. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 2006; 32:1100–5.PubMedCrossRef
23.
go back to reference Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 1998;39:792–7.PubMed Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 1998;39:792–7.PubMed
24.
go back to reference Abi-Dargham A, Gandelman M, Zoghbi SS, Laruelle M, Baldwin RM, Randall P, et al. Reproducibility of SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil. J Nucl Med 1995;36:167–75.PubMed Abi-Dargham A, Gandelman M, Zoghbi SS, Laruelle M, Baldwin RM, Randall P, et al. Reproducibility of SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil. J Nucl Med 1995;36:167–75.PubMed
25.
go back to reference Kirk RE. Experimental design: procedures for the behavioural sciences. Pacific Grove: Brooks/Cole; 1992. Kirk RE. Experimental design: procedures for the behavioural sciences. Pacific Grove: Brooks/Cole; 1992.
26.
go back to reference Bier D, Holschbach MH, Wutz W, Olsson RA, Coenen HH. Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab Dispos 2006;34:570–6.PubMedCrossRef Bier D, Holschbach MH, Wutz W, Olsson RA, Coenen HH. Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab Dispos 2006;34:570–6.PubMedCrossRef
27.
go back to reference Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998;18:84–112.PubMed Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998;18:84–112.PubMed
28.
go back to reference Chung WG, Kang JH, Park CS, Cho MH, Cha YN. Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther 2000;67:258–66.PubMedCrossRef Chung WG, Kang JH, Park CS, Cho MH, Cha YN. Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther 2000;67:258–66.PubMedCrossRef
29.
go back to reference Meerlo P, Roman V, Farkas E, Keijser JN, Nyakas C, Luiten PG. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 2004;78:742–8.PubMedCrossRef Meerlo P, Roman V, Farkas E, Keijser JN, Nyakas C, Luiten PG. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 2004;78:742–8.PubMedCrossRef
30.
go back to reference Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004;73:379–96.PubMedCrossRef Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004;73:379–96.PubMedCrossRef
31.
go back to reference Johansson B, Ahlberg S, van der Ploeg I, Brene S, Lindefors N, Persson H, et al. Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1993;347:407–14.PubMedCrossRef Johansson B, Ahlberg S, van der Ploeg I, Brene S, Lindefors N, Persson H, et al. Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1993;347:407–14.PubMedCrossRef
32.
go back to reference Dunwiddie TV. Adenosine and alcohol: is there a caffeine connection in the actions of ethanol? The “drunken” synapse: studies of alcohol-related disorders. 1999;119–33 Dunwiddie TV. Adenosine and alcohol: is there a caffeine connection in the actions of ethanol? The “drunken” synapse: studies of alcohol-related disorders. 1999;119–33
33.
go back to reference Smith GS, Price JC, Lopresti BJ, Huang Y, Simpson N, Holt D, et al. Test–retest variability of serotonin 5-HT2A receptor binding measured with positron emission tomography and [18F]altanserin in the human brain. Synapse 1998;30:380–92.PubMedCrossRef Smith GS, Price JC, Lopresti BJ, Huang Y, Simpson N, Holt D, et al. Test–retest variability of serotonin 5-HT2A receptor binding measured with positron emission tomography and [18F]altanserin in the human brain. Synapse 1998;30:380–92.PubMedCrossRef
Metadata
Title
Test–retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET
Authors
David Elmenhorst
Philipp T. Meyer
Andreas Matusch
Oliver H. Winz
Karl Zilles
Andreas Bauer
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2007
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0309-x

Other articles of this Issue 7/2007

European Journal of Nuclear Medicine and Molecular Imaging 7/2007 Go to the issue