Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2005

01-12-2005 | Supplement

Primer on molecular imaging technology

Author: Craig S. Levin

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 2/2005

Login to get access

Abstract

A wide range of technologies is available for in vivo, ex vivo, and in vitro molecular and cellular imaging. This article focuses on three key in vivo imaging system instrumentation technologies used in the molecular imaging research described in this special issue of Eur J Nucl Med Mol Imaging: positron emission tomography, single-photon emission computed tomography, and bioluminescence imaging. For each modality, the basics of how it works, important performance parameters, and the state-of-the-art instrumentation are described. Comparisons and integration of multiple modalities are also discussed. The principles discussed in this article apply to both human and small animal imaging.
Literature
1.
go back to reference Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99CrossRefPubMed Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99CrossRefPubMed
2.
go back to reference Levin CS. Design of a high resolution and high sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci 2002;45(5):2236–43CrossRef Levin CS. Design of a high resolution and high sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci 2002;45(5):2236–43CrossRef
3.
go back to reference Tai YC, Chatziioannou AF, Yang YF, et al. The MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 2003;48(11):1519–37CrossRefPubMed Tai YC, Chatziioannou AF, Yang YF, et al. The MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 2003;48(11):1519–37CrossRefPubMed
4.
go back to reference Miyaoka RS, Kohlmyer SG, Lewellen TK. Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci 2001;48(no.4, pt 2):1403–7CrossRef Miyaoka RS, Kohlmyer SG, Lewellen TK. Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci 2001;48(no.4, pt 2):1403–7CrossRef
5.
go back to reference Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46(7):1845–62CrossRefPubMed Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46(7):1845–62CrossRefPubMed
6.
go back to reference Tai YC, Ruangma A, Laforest R, Siegel S, Newport DF. Performance evaluation of the microPET (R) Focus: a second generation small animal PET system. J Nucl Med 2003;44(5):159P–160P Tai YC, Ruangma A, Laforest R, Siegel S, Newport DF. Performance evaluation of the microPET (R) Focus: a second generation small animal PET system. J Nucl Med 2003;44(5):159P–160P
7.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, et al. Performance of a brain PET camera based on Anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 2003;44(8):1340–9PubMed Karp JS, Surti S, Daube-Witherspoon ME, et al. Performance of a brain PET camera based on Anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 2003;44(8):1340–9PubMed
8.
go back to reference Bettinardi V, Danna M, Savi A, et al. Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging 2004;31(6):867–81CrossRefPubMed Bettinardi V, Danna M, Savi A, et al. Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging 2004;31(6):867–81CrossRefPubMed
9.
go back to reference Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci 1999;46(4)985–90CrossRef Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci 1999;46(4)985–90CrossRef
10.
go back to reference Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003;50(5):1347–50CrossRef Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003;50(5):1347–50CrossRef
11.
go back to reference Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8CrossRef Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8CrossRef
12.
go back to reference Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16(2):145–58CrossRefPubMed Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16(2):145–58CrossRefPubMed
13.
go back to reference Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16PubMed Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16PubMed
14.
go back to reference Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc 1985;80:8–37 Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc 1985;80:8–37
15.
go back to reference Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging 1989;8:194–202CrossRef Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging 1989;8:194–202CrossRef
16.
go back to reference Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1982;1:113–22 Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1982;1:113–22
17.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9CrossRef
18.
go back to reference Rollo FD. Nuclear medicine physics, instrumentation, and agents. St. Louis: Mosby, 1977 Rollo FD. Nuclear medicine physics, instrumentation, and agents. St. Louis: Mosby, 1977
19.
go back to reference Schramm NU, Ebel G, Engeland U, et al. High resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci 2003;51:757–63 Schramm NU, Ebel G, Engeland U, et al. High resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci 2003;51:757–63
20.
go back to reference Beekman FJ, Vastenbouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92CrossRefPubMed Beekman FJ, Vastenbouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92CrossRefPubMed
21.
go back to reference Weisenberger AG, Wojcik R, Bradley EL, et al. SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 2003;50(1):74–9CrossRef Weisenberger AG, Wojcik R, Bradley EL, et al. SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 2003;50(1):74–9CrossRef
22.
go back to reference MacDonald LR, Patt BE, Iwanczyk JS et. al. Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 2001;48(3) MacDonald LR, Patt BE, Iwanczyk JS et. al. Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 2001;48(3)
23.
go back to reference Mueller B, O’Connor MK, Blevis I, et al. Evaluation of a small cadmium zinc telluride detector for scintimammography. J Nucl Med 2003;44(4):602–9 Mueller B, O’Connor MK, Blevis I, et al. Evaluation of a small cadmium zinc telluride detector for scintimammography. J Nucl Med 2003;44(4):602–9
24.
go back to reference Zeng GL, Gagnon D. CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 2004;49:2257–71CrossRefPubMed Zeng GL, Gagnon D. CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 2004;49:2257–71CrossRefPubMed
25.
go back to reference Mason WT, ed. Fluorescent and luminescent probes for biological activity. London: Academic Press, 1999 Mason WT, ed. Fluorescent and luminescent probes for biological activity. London: Academic Press, 1999
26.
go back to reference Contag CH, Contag PR, Mullins JI, et al. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995;8:593–603CrossRef Contag CH, Contag PR, Mullins JI, et al. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995;8:593–603CrossRef
27.
go back to reference Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000;2:41–52CrossRefPubMed Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000;2:41–52CrossRefPubMed
28.
go back to reference Zhao H, Doyle TC, Coquoz O, et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Optics 2005;10(4) Zhao H, Doyle TC, Coquoz O, et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Optics 2005;10(4)
29.
go back to reference Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press, 1978 Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press, 1978
30.
go back to reference Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electron 1990;26:2166–85CrossRef Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electron 1990;26:2166–85CrossRef
31.
go back to reference Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001;6(4):432–40CrossRefPubMed Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001;6(4):432–40CrossRefPubMed
33.
go back to reference Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys 2004;31(8):2289–99CrossRefPubMed Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys 2004;31(8):2289–99CrossRefPubMed
34.
go back to reference Gu X, Zhang Q, Larcom L, Jiang H. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt Express 2004;12(17):3996–4000CrossRef Gu X, Zhang Q, Larcom L, Jiang H. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt Express 2004;12(17):3996–4000CrossRef
35.
go back to reference Campbell RE, Tour O, Palmer AE, et al. A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 2002;99:7877–82CrossRefPubMed Campbell RE, Tour O, Palmer AE, et al. A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 2002;99:7877–82CrossRefPubMed
36.
go back to reference Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001;7:743–8CrossRefPubMed Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001;7:743–8CrossRefPubMed
37.
go back to reference Hawrysz DJ, Sevick-Muraca EM. Developments toward diagnostic breast cancer using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2000;2:388–417CrossRefPubMed Hawrysz DJ, Sevick-Muraca EM. Developments toward diagnostic breast cancer using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2000;2:388–417CrossRefPubMed
38.
go back to reference Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17:375–8CrossRef Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17:375–8CrossRef
39.
go back to reference Sevick-Muraca EM, Houston JP, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 2002;6:642–50CrossRefPubMed Sevick-Muraca EM, Houston JP, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 2002;6:642–50CrossRefPubMed
40.
go back to reference Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse meda by use of a normalized born approximation. Opt Lett 2001;26:893–5 Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse meda by use of a normalized born approximation. Opt Lett 2001;26:893–5
41.
go back to reference Schmidt FEW, Fry ME, Hillman EMC, et al. A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instr 2000;71(1):256–65 Schmidt FEW, Fry ME, Hillman EMC, et al. A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instr 2000;71(1):256–65
42.
go back to reference Culver JP, Choe R, Holboke MJ, et al. 3d diffuse optical tomography in the plane parallel transmission geometry; evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 2003;30(2):235–47CrossRefPubMed Culver JP, Choe R, Holboke MJ, et al. 3d diffuse optical tomography in the plane parallel transmission geometry; evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 2003;30(2):235–47CrossRefPubMed
43.
go back to reference Yu G, Durduran T, Furuya D, et al. Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics. Appl Opt 2003;42(16):2931–9PubMed Yu G, Durduran T, Furuya D, et al. Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics. Appl Opt 2003;42(16):2931–9PubMed
44.
go back to reference Corlu A, Durduran T, Choe R, et al. Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt Lett 2003;28:2339–41PubMed Corlu A, Durduran T, Choe R, et al. Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt Lett 2003;28:2339–41PubMed
45.
go back to reference Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80CrossRefPubMed Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80CrossRefPubMed
46.
go back to reference Hill DLG, Batchelor PG, Holden M, Hawkes D. Medical image registration. Phys Med Biol 2001;46:R1–45CrossRefPubMed Hill DLG, Batchelor PG, Holden M, Hawkes D. Medical image registration. Phys Med Biol 2001;46:R1–45CrossRefPubMed
47.
go back to reference Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30(10):1419–37 Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30(10):1419–37
48.
go back to reference Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–53CrossRefPubMed Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–53CrossRefPubMed
49.
go back to reference Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75:S24–30PubMed Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75:S24–30PubMed
50.
go back to reference Forster GJ, Laumann C, Nickel O, et al. SPECT/CT image co-registration in the abdomen with a simple and cost-effective tool. Eur J Nucl Med Mol Imaging 2003;30(1):32–9CrossRefPubMed Forster GJ, Laumann C, Nickel O, et al. SPECT/CT image co-registration in the abdomen with a simple and cost-effective tool. Eur J Nucl Med Mol Imaging 2003;30(1):32–9CrossRefPubMed
51.
go back to reference Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003;XXXIII(30):205–18CrossRef Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003;XXXIII(30):205–18CrossRef
55.
go back to reference Peter J, Ruehle H, Stamm V, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Proc SPIE, European Conference on Biomedical Optics, in press Peter J, Ruehle H, Stamm V, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Proc SPIE, European Conference on Biomedical Optics, in press
56.
go back to reference Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 2005;50:4225–41CrossRefPubMed Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 2005;50:4225–41CrossRefPubMed
58.
go back to reference Shao Y, Cherry SR, Farahani K, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70CrossRefPubMed Shao Y, Cherry SR, Farahani K, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70CrossRefPubMed
59.
go back to reference Grazioso R, Zhang N, Corbeil J, et al. APD-based PET detector for simultaneous PET/MR imaging. Abstract M06-6, presented at the IEEE Medical Imaging Conference, Puerto Rico, 2005 Grazioso R, Zhang N, Corbeil J, et al. APD-based PET detector for simultaneous PET/MR imaging. Abstract M06-6, presented at the IEEE Medical Imaging Conference, Puerto Rico, 2005
60.
go back to reference Louie AY, Meade TJ. Recent advances in MRI: novel contrast agents shed light on in vivo biochemistry. Trends Biochem Sci 2000, 7–11 Louie AY, Meade TJ. Recent advances in MRI: novel contrast agents shed light on in vivo biochemistry. Trends Biochem Sci 2000, 7–11
61.
go back to reference Leong-Poi H, Christiansen J, Klibanov AL, et al. Non-invasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455–60CrossRefPubMed Leong-Poi H, Christiansen J, Klibanov AL, et al. Non-invasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455–60CrossRefPubMed
Metadata
Title
Primer on molecular imaging technology
Author
Craig S. Levin
Publication date
01-12-2005
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 2/2005
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-005-1973-y

Other articles of this Special Issue 2/2005

European Journal of Nuclear Medicine and Molecular Imaging 2/2005 Go to the issue