Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 11/2004

01-11-2004 | Review Article

Small animal PET: aspects of performance assessment

Authors: Simone Weber, Andreas Bauer

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 11/2004

Login to get access

Abstract

Dedicated small animal positron emission tomography (PET) systems are increasingly prevalent in industry (e.g. for preclinical drug development) and biological research. Such systems permit researchers to perform animal studies of a longitudinal design characterised by repeated measurements in single animals. With the advent of commercial systems, scanners have become readily available and increasingly popular. As a consequence, technical specifications are becoming more diverse, making scanner systems less broadly applicable. The investigator has, therefore, to make a decision regarding which type of scanner is most suitable for the intended experiments. This decision should be based on gantry characteristics and the physical performance. The first few steps have been taken towards standardisation of the assessment of performance characteristics of dedicated animal PET systems, though such assessment is not yet routinely implemented. In this review, we describe current methods of evaluation of physical performance parameters of small animal PET scanners. Effects of methodologically different approaches on the results are assessed. It is underscored that particular attention has to be paid to spatial resolution, sensitivity, scatter fraction and count rate performance. Differences in performance measurement methods are described with regard to commercially available systems, namely the Concorde MicroPET systems P4 and R4 and the quad-HIDAC. Lastly, consequences of differences in scanner performance parameters are rated with respect to applications of small animal PET.
Literature
1.
go back to reference Tournai MP, Jaszcak RJ, Turkington TG, Coleman RE. Small-animal PET: advent of a new era of PET research. J Nucl Med 1999;40:1176–8.PubMed Tournai MP, Jaszcak RJ, Turkington TG, Coleman RE. Small-animal PET: advent of a new era of PET research. J Nucl Med 1999;40:1176–8.PubMed
2.
go back to reference Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.CrossRefPubMed Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.CrossRefPubMed
3.
go back to reference Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 2002;29:98–114.CrossRefPubMed Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 2002;29:98–114.CrossRefPubMed
5.
go back to reference Hume SP, Myers R. Dedicated small animal scanners: a new tool for drug development? Curr Pharm Design 2002;8:1497–511. Hume SP, Myers R. Dedicated small animal scanners: a new tool for drug development? Curr Pharm Design 2002;8:1497–511.
6.
go back to reference Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography. J Nucl Med 1991;32:2342–50.PubMed Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography. J Nucl Med 1991;32:2342–50.PubMed
7.
go back to reference National Electrical Manufacturers Association. NEMA Standards Publication NU 2-1994: performance measurements of positron emission tomographs. Washington: National Electrical Manufacturers Association; 1994. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-1994: performance measurements of positron emission tomographs. Washington: National Electrical Manufacturers Association; 1994.
8.
go back to reference Daube-Witherspoon ME, Karp JE, Casey ME, et al. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med 2002;43:1398–409.PubMed Daube-Witherspoon ME, Karp JE, Casey ME, et al. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med 2002;43:1398–409.PubMed
9.
go back to reference National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001: performance measurements of positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2001. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001: performance measurements of positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2001.
10.
go back to reference Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46:1845–62.CrossRefPubMed Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46:1845–62.CrossRefPubMed
11.
go back to reference Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30:737–47.PubMed Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30:737–47.PubMed
12.
go back to reference Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;46:468–73.CrossRef Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;46:468–73.CrossRef
13.
go back to reference Missimer J, Madi Z, Honer M, Keller C, Schubiger A, Ametamey SM. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 2004;49:2069–81.CrossRefPubMed Missimer J, Madi Z, Honer M, Keller C, Schubiger A, Ametamey SM. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 2004;49:2069–81.CrossRefPubMed
14.
go back to reference Bloomfield PM, Rajeswaran S, Spinks TJ, et al. The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol 1995;40:1105–26.CrossRefPubMed Bloomfield PM, Rajeswaran S, Spinks TJ, et al. The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol 1995;40:1105–26.CrossRefPubMed
15.
go back to reference Bloomfield PM, Myers R, Hume SP, et al. Three-dimensional performance of a small-diameter positron emission tomograph. Phys Med Biol 1997;42:389–400.CrossRefPubMed Bloomfield PM, Myers R, Hume SP, et al. Three-dimensional performance of a small-diameter positron emission tomograph. Phys Med Biol 1997;42:389–400.CrossRefPubMed
16.
go back to reference Watanabe M, Okada H, Shimizu K, et al. A high resolution animal PET scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci 1997;44:1277–82.CrossRef Watanabe M, Okada H, Shimizu K, et al. A high resolution animal PET scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci 1997;44:1277–82.CrossRef
17.
go back to reference Weber S, Herzog H, Cremer M, et al. Evaluation of the TierPET system. IEEE Trans Nucl Sci 1999;46:1177–83.CrossRef Weber S, Herzog H, Cremer M, et al. Evaluation of the TierPET system. IEEE Trans Nucl Sci 1999;46:1177–83.CrossRef
18.
go back to reference Weber S, Bauer A, Herzog H, et al. Recent results of the TierPET scanner. IEEE Trans Nucl Sci 2000;47:1665–9.CrossRef Weber S, Bauer A, Herzog H, et al. Recent results of the TierPET scanner. IEEE Trans Nucl Sci 2000;47:1665–9.CrossRef
19.
go back to reference Ziegler SI, Pichler BJ, Boening G, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136–43.CrossRefPubMed Ziegler SI, Pichler BJ, Boening G, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136–43.CrossRefPubMed
20.
go back to reference Siegel S, Vaquero JJ, Aloj L, et al. Initial results from a PET/planar small animal imaging system. IEEE Trans Nucl Sci 1999;46:571–5.CrossRef Siegel S, Vaquero JJ, Aloj L, et al. Initial results from a PET/planar small animal imaging system. IEEE Trans Nucl Sci 1999;46:571–5.CrossRef
21.
go back to reference Lecomte R, Cadorette J, Rodrigue S, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 1996;43:1952–7.CrossRef Lecomte R, Cadorette J, Rodrigue S, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 1996;43:1952–7.CrossRef
22.
go back to reference Bruyndonckx P, Liu X, Tavernier S, Zhang S. Performance study of a 3D small animal PET scanner based on BaF2 crystals and a photo sensitive wire chamber. Nucl Instrum Methods A 1997;392:407–13.CrossRef Bruyndonckx P, Liu X, Tavernier S, Zhang S. Performance study of a 3D small animal PET scanner based on BaF2 crystals and a photo sensitive wire chamber. Nucl Instrum Methods A 1997;392:407–13.CrossRef
23.
go back to reference Chatziioannou AF, Cherry S, Shao Y, et al. Performance evaluation of microPET: a high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.PubMed Chatziioannou AF, Cherry S, Shao Y, et al. Performance evaluation of microPET: a high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.PubMed
24.
go back to reference Di Domenico G, Motta A, Zavattini G, et al. Characterization of the Ferrara animal PET scanner. Nucl Instrum Methods A 2002;477:505–508. Di Domenico G, Motta A, Zavattini G, et al. Characterization of the Ferrara animal PET scanner. Nucl Instrum Methods A 2002;477:505–508.
25.
go back to reference Bruyndonckx P, Xuan L, Rajeswaran S, Smolik W, Tavernier S, Shuping Z. Design and physical characteristics of a small animal PET using BaF2 crystals and a photosensitive wire chamber. Nucl Instrum Methods A 1996;382:589–600.CrossRef Bruyndonckx P, Xuan L, Rajeswaran S, Smolik W, Tavernier S, Shuping Z. Design and physical characteristics of a small animal PET using BaF2 crystals and a photosensitive wire chamber. Nucl Instrum Methods A 1996;382:589–600.CrossRef
26.
go back to reference Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.CrossRef Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.CrossRef
27.
go back to reference Defrise M, Kinahan P. Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer Academic; 1998. p 11–53. Defrise M, Kinahan P. Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer Academic; 1998. p 11–53.
28.
go back to reference Defrise M, Kinahan PE, Townsend D, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.CrossRefPubMed Defrise M, Kinahan PE, Townsend D, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.CrossRefPubMed
29.
go back to reference Liow JS, Strother SC. The convergence of object-dependent resolution in maximum likelihood based tomographic resolution. Phys Med Biol 1993;38:55–70.CrossRefPubMed Liow JS, Strother SC. The convergence of object-dependent resolution in maximum likelihood based tomographic resolution. Phys Med Biol 1993;38:55–70.CrossRefPubMed
30.
go back to reference Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.CrossRefPubMed Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.CrossRefPubMed
31.
go back to reference Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990;37:783–8.CrossRef Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990;37:783–8.CrossRef
32.
go back to reference Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996;41:1755–76.CrossRefPubMed Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996;41:1755–76.CrossRefPubMed
33.
go back to reference Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 1992;39:502–5.CrossRef Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 1992;39:502–5.CrossRef
34.
go back to reference Reader AJ, Allay S, Bakatselos F, et al. One-pass list-mode EM algorithm for high resolution 3D PET image reconstruction into large arrays. IEEE Trans Nucl Sci 2002;49:693–9.CrossRef Reader AJ, Allay S, Bakatselos F, et al. One-pass list-mode EM algorithm for high resolution 3D PET image reconstruction into large arrays. IEEE Trans Nucl Sci 2002;49:693–9.CrossRef
35.
go back to reference Myers R, Hume S, Bloomfield P, Jones T. Radio-imaging in small animals. J Psychopharmacol 1999;13:352–7.PubMed Myers R, Hume S, Bloomfield P, Jones T. Radio-imaging in small animals. J Psychopharmacol 1999;13:352–7.PubMed
36.
37.
go back to reference Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.CrossRefPubMed Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.CrossRefPubMed
38.
go back to reference Rowland DJ, Lewis JS, Welch MJ. Molecular imaging: the application of small animal positron emission tomography. J Cell Biochem 2002;39(Suppl):110–5.CrossRef Rowland DJ, Lewis JS, Welch MJ. Molecular imaging: the application of small animal positron emission tomography. J Cell Biochem 2002;39(Suppl):110–5.CrossRef
39.
go back to reference Herschman HR. Micro-PET imaging and small animal models of disease. Curr Opin Immunol 2003;15:378–84.CrossRefPubMed Herschman HR. Micro-PET imaging and small animal models of disease. Curr Opin Immunol 2003;15:378–84.CrossRefPubMed
40.
go back to reference Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 1998;25:173–6.CrossRefPubMed Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 1998;25:173–6.CrossRefPubMed
41.
go back to reference Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian M. Effect of positron range on spatial resolution. J Nucl Med 1975;16:649–52.PubMed Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian M. Effect of positron range on spatial resolution. J Nucl Med 1975;16:649–52.PubMed
42.
go back to reference Cho ZH, Chan JK, Ericksson L, et al. Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 1975;16:1174–6.PubMed Cho ZH, Chan JK, Ericksson L, et al. Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 1975;16:1174–6.PubMed
43.
go back to reference Derenzo SE. Precision measurement of annihilation point spread distributions for medically important positron emitters. In: Hasiguti RR, Fujiwara K, editors. Positron annihilation. Sendai: The Japan Institute of Metals; 1979. p 819–23. Derenzo SE. Precision measurement of annihilation point spread distributions for medically important positron emitters. In: Hasiguti RR, Fujiwara K, editors. Positron annihilation. Sendai: The Japan Institute of Metals; 1979. p 819–23.
44.
go back to reference Palmer RP, Brownell GL. Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imaging 1992;11:373–8.CrossRef Palmer RP, Brownell GL. Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imaging 1992;11:373–8.CrossRef
45.
go back to reference Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44–51.CrossRefPubMed Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44–51.CrossRefPubMed
46.
go back to reference Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99.CrossRefPubMed Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99.CrossRefPubMed
47.
go back to reference Laforest R, Rowland DJ, Welch MJ. microPET imaging with nonconventional isotopes. IEEE Trans Nucl Sci 2002;49:2119–26.CrossRef Laforest R, Rowland DJ, Welch MJ. microPET imaging with nonconventional isotopes. IEEE Trans Nucl Sci 2002;49:2119–26.CrossRef
Metadata
Title
Small animal PET: aspects of performance assessment
Authors
Simone Weber
Andreas Bauer
Publication date
01-11-2004
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 11/2004
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1683-x

Other articles of this Issue 11/2004

European Journal of Nuclear Medicine and Molecular Imaging 11/2004 Go to the issue