Skip to main content
Top
Published in: Skeletal Radiology 7/2023

30-12-2022 | Club Foot | Scientific Article

Assessment of foot deformities in individuals with cerebral palsy using weight-bearing CT

Authors: R. H. H. Wellenberg, W. Schallig, P. Steenbergen, P. den Tex, J. G. G. Dobbe, G. J. Streekstra, M. M. E. H. Witbreuk, A. I. Buizer, M. Maas

Published in: Skeletal Radiology | Issue 7/2023

Login to get access

Abstract

Objective

The aims of this study were to visualize and quantify relative bone positions in the feet of individuals with cerebral palsy (CP) with a foot deformity and compare bone positions with those of typically developed (TD) controls.

Materials and methods

Weight-bearing CT images of 14 individuals with CP scheduled for tendon transfer and/or bony surgery and of 20 TD controls were acquired on a Planmed Verity WBCT scanner. Centroids of the navicular and calcaneus with respect to the talus were used to quantify foot deformities. All taluses were aligned and the size and dimensions of the individuals’ talus were scaled to correct for differences in bone sizes. In order to visualize and quantify variations in relative bone positions, 95% CI ellipsoids and standard deviations in its principle X-, Y-, and Z-directions were determined.

Results

In individuals with CP (age 11–17), a large variation in centroid positions was observed compared to data of TD controls. Radiuses of the ellipsoids, representing the standard deviations of the 95% CI in the principle X-, Y-, and Z-directions, were larger in individuals with CP compared to TD controls for both the calcaneus (3.16 vs 1.86 mm, 4.26 vs 2.60 mm, 9.19 vs 3.60 mm) and navicular (4.63 vs 1.55 mm, 5.18 vs 2.10 mm, 16.07 vs 4.16 mm).

Conclusion

By determining centroids of the calcaneus and navicular with respect to the talus on WBCT images, normal and abnormal relative bone positions can be visualized and quantified in individuals with CP with various foot deformities.
Literature
1.
go back to reference Michael-Asalu A, Taylor G, Campbell H, Lelea LL, Kirby RS. Cerebral palsy: diagnosis, epidemiology, genetics, and clinical update. Adv Pediatr. 2019;66:189–208.CrossRefPubMed Michael-Asalu A, Taylor G, Campbell H, Lelea LL, Kirby RS. Cerebral palsy: diagnosis, epidemiology, genetics, and clinical update. Adv Pediatr. 2019;66:189–208.CrossRefPubMed
2.
go back to reference O’Connell PA, D’Souza L, Dudeney S, Stephens M. Foot deformities in children with cerebral palsy. J Pediatr Orthop. 1998;18(6):743–7.CrossRefPubMed O’Connell PA, D’Souza L, Dudeney S, Stephens M. Foot deformities in children with cerebral palsy. J Pediatr Orthop. 1998;18(6):743–7.CrossRefPubMed
3.
go back to reference Kedem P, Scher DM. Foot deformities in children with cerebral palsy. Curr Opin Pediatr. 2015;27(1):67–74.CrossRefPubMed Kedem P, Scher DM. Foot deformities in children with cerebral palsy. Curr Opin Pediatr. 2015;27(1):67–74.CrossRefPubMed
4.
go back to reference Miller F. Atlas of foot and ankle procedures in cerebral palsy. Cerebral Palsy. 2018;1–41. Miller F. Atlas of foot and ankle procedures in cerebral palsy. Cerebral Palsy. 2018;1–41.
5.
go back to reference Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol. 2013;111:169–76.CrossRefPubMed Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol. 2013;111:169–76.CrossRefPubMed
6.
go back to reference Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000;42(12):816–24.CrossRef Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000;42(12):816–24.CrossRef
7.
go back to reference Schroeder KM, Heydemann JA, Beauvais DH. Musculoskeletal imaging in cerebral palsy. Phys Med Rehabil Clin N Am. 2020;31(1):39–56.CrossRefPubMed Schroeder KM, Heydemann JA, Beauvais DH. Musculoskeletal imaging in cerebral palsy. Phys Med Rehabil Clin N Am. 2020;31(1):39–56.CrossRefPubMed
8.
go back to reference Schallig W, Streekstra GJ, Hulshof CM, Kleipool RP, Dobbe JGG, Maas M, et al. The influence of soft tissue artifacts on multi-segment foot kinematics. J Biomech. 2021;120:110359.CrossRefPubMed Schallig W, Streekstra GJ, Hulshof CM, Kleipool RP, Dobbe JGG, Maas M, et al. The influence of soft tissue artifacts on multi-segment foot kinematics. J Biomech. 2021;120:110359.CrossRefPubMed
9.
go back to reference Carrara C, Caravaggi P, Belvedere C, Leardini A. Radiographic angular measurements of the foot and ankle in weight-bearing: a literature review. Foot Ankle Surg. 2020;26(5):509–17.CrossRefPubMed Carrara C, Caravaggi P, Belvedere C, Leardini A. Radiographic angular measurements of the foot and ankle in weight-bearing: a literature review. Foot Ankle Surg. 2020;26(5):509–17.CrossRefPubMed
10.
go back to reference Conti MS, Ellis SJ. Weight-bearing CT scans in foot and ankle surgery. J Am Acad Orthop Surg. 2020;28(14):e595-603.CrossRefPubMed Conti MS, Ellis SJ. Weight-bearing CT scans in foot and ankle surgery. J Am Acad Orthop Surg. 2020;28(14):e595-603.CrossRefPubMed
11.
go back to reference Koivisto J, Kiljunen T, Kadesjö N, Shi XQ, Wolff J. Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region. J Foot Ankle Res. 2015;8(8):1–10. Koivisto J, Kiljunen T, Kadesjö N, Shi XQ, Wolff J. Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region. J Foot Ankle Res. 2015;8(8):1–10.
12.
go back to reference Holbrook HS, Bowers AF, Mahmoud K, Kelly DM. Weight-bearing computed tomography of the foot and ankle in the pediatric population. J Pediatr Orthop. 2022;42(6):321–6.CrossRefPubMed Holbrook HS, Bowers AF, Mahmoud K, Kelly DM. Weight-bearing computed tomography of the foot and ankle in the pediatric population. J Pediatr Orthop. 2022;42(6):321–6.CrossRefPubMed
14.
go back to reference Palisano R, Rosenbaum P, Walter S, Russell D, Wood EGB. Reliability of a system, function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.CrossRefPubMed Palisano R, Rosenbaum P, Walter S, Russell D, Wood EGB. Reliability of a system, function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.CrossRefPubMed
15.
go back to reference Broos M, Berardo S, Dobbe JGG, Maas M, Streekstra GJ, Wellenberg RHH. Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard? Eur J Radiol. 2021;138:1–9. Broos M, Berardo S, Dobbe JGG, Maas M, Streekstra GJ, Wellenberg RHH. Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard? Eur J Radiol. 2021;138:1–9.
16.
go back to reference Dobbe JGG, de Roo MGA, Visschers JC, Strackee SD, Streekstra GJ. Evaluation of a quantitative method for carpal motion analysis using clinical 3D and 4D CT protocols. IEEE Trans Med Imaging. 2019;38(4):1048–57.CrossRefPubMed Dobbe JGG, de Roo MGA, Visschers JC, Strackee SD, Streekstra GJ. Evaluation of a quantitative method for carpal motion analysis using clinical 3D and 4D CT protocols. IEEE Trans Med Imaging. 2019;38(4):1048–57.CrossRefPubMed
17.
go back to reference Cody EA, Williamson ER, Burket JC, Deland JT, Ellis SJ. Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters. Foot Ankle Int. 2016;37(8):874–81.CrossRefPubMed Cody EA, Williamson ER, Burket JC, Deland JT, Ellis SJ. Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters. Foot Ankle Int. 2016;37(8):874–81.CrossRefPubMed
18.
go back to reference Probasco W, Haleem AM, Yu J, Sangeorzan BJ, Deland JT, Ellis SJ. Assessment of coronal plane subtalar joint alignment in peritalar subluxation via weight-bearing multiplanar imaging. Foot Ankle Int. 2015;36(3):302–9.CrossRefPubMed Probasco W, Haleem AM, Yu J, Sangeorzan BJ, Deland JT, Ellis SJ. Assessment of coronal plane subtalar joint alignment in peritalar subluxation via weight-bearing multiplanar imaging. Foot Ankle Int. 2015;36(3):302–9.CrossRefPubMed
19.
go back to reference Flores DV, Mejía Gómez C, Fernández Hernando M, Davis MA, Pathria MN. Adult acquired flatfoot deformity : anatomy, biomechanics, staging, and imaging findings. Radiographics. 2019;39(5):1437–60.CrossRefPubMed Flores DV, Mejía Gómez C, Fernández Hernando M, Davis MA, Pathria MN. Adult acquired flatfoot deformity : anatomy, biomechanics, staging, and imaging findings. Radiographics. 2019;39(5):1437–60.CrossRefPubMed
20.
go back to reference Shakoor D, de Cesar NC, Thawait GK, Ellis SJ, Richter M, Schon LC, et al. Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg. 2021;27(2):201–6.CrossRefPubMed Shakoor D, de Cesar NC, Thawait GK, Ellis SJ, Richter M, Schon LC, et al. Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg. 2021;27(2):201–6.CrossRefPubMed
21.
go back to reference Leardini A, Durante DPS, Belvedere C, Caravaggi P, Carrara C, Berti ML, et al. Weight-bearing CT technology in musculoskeletal pathologies of the lower limbs: techniques, initial applications, and preliminary combinations with gait- analysis measurements at the Istituto Ortopedico Rizzoli. Semin Musculoskelet Radiol. 2019;23(6):643–56.CrossRefPubMed Leardini A, Durante DPS, Belvedere C, Caravaggi P, Carrara C, Berti ML, et al. Weight-bearing CT technology in musculoskeletal pathologies of the lower limbs: techniques, initial applications, and preliminary combinations with gait- analysis measurements at the Istituto Ortopedico Rizzoli. Semin Musculoskelet Radiol. 2019;23(6):643–56.CrossRefPubMed
22.
go back to reference Gutekunst DJ, Liu L, Ju T, Prior FW, Sinacore DR. Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. J Foot Ankle Res. 2013;6(38):1–8. Gutekunst DJ, Liu L, Ju T, Prior FW, Sinacore DR. Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. J Foot Ankle Res. 2013;6(38):1–8.
23.
go back to reference Fassbind MJ, Rohr ES, Hu Y, Haynor DR, Siegler S, Sangeorzan BJ, et al. Evaluating foot kinematics using magnetic resonance imaging: From maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. J Biomech Eng. 2011;133(10):1–7. Fassbind MJ, Rohr ES, Hu Y, Haynor DR, Siegler S, Sangeorzan BJ, et al. Evaluating foot kinematics using magnetic resonance imaging: From maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. J Biomech Eng. 2011;133(10):1–7.
24.
go back to reference Kleipool RP, Stufkens SAS, Dahmen J, Vuurberg G, Streekstra GJ, Dobbe JGG, et al. Difference in orientation of the talar articular facets between healthy ankle joints and ankle joints with chronic instability. J Orthop Res. 2022;40(3):695–702.CrossRefPubMed Kleipool RP, Stufkens SAS, Dahmen J, Vuurberg G, Streekstra GJ, Dobbe JGG, et al. Difference in orientation of the talar articular facets between healthy ankle joints and ankle joints with chronic instability. J Orthop Res. 2022;40(3):695–702.CrossRefPubMed
25.
go back to reference Lenz AL, Strobel MA, Anderson AM, Fial AV, MacWilliams BA, Krzak JJ, et al. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: a systematic review. J Biomech. 2021;120:1–15.CrossRefPubMed Lenz AL, Strobel MA, Anderson AM, Fial AV, MacWilliams BA, Krzak JJ, et al. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: a systematic review. J Biomech. 2021;120:1–15.CrossRefPubMed
26.
go back to reference Conconi M, Pompili A, Sancisi N, Leardini A, Durante S, Belvedere C. New anatomical reference systems for the bones of the foot and ankle complex: definitions and exploitation on clinical conditions. J Foot Ankle Res. 2021;14(1):1–13.CrossRef Conconi M, Pompili A, Sancisi N, Leardini A, Durante S, Belvedere C. New anatomical reference systems for the bones of the foot and ankle complex: definitions and exploitation on clinical conditions. J Foot Ankle Res. 2021;14(1):1–13.CrossRef
27.
go back to reference Wellenberg RHH, Dobbe JGG, Erkkila J, Maas M, Streekstra GJ. Marker-less assessment of the geometric error of fused cone-beam CT images of the foot constructed using stitching software. Acta radiol. 2020;0(0):1–8. Wellenberg RHH, Dobbe JGG, Erkkila J, Maas M, Streekstra GJ. Marker-less assessment of the geometric error of fused cone-beam CT images of the foot constructed using stitching software. Acta radiol. 2020;0(0):1–8.
28.
go back to reference Caiti G, Dobbe JGG, Strijkers GJ, Strackee SD, Streekstra GJ. Positioning error of custom 3D-printed surgical guides for the radius: influence of fitting location and guide design. Int J Comput Assist Radiol Surg. 2018;13(4):507–18.CrossRefPubMed Caiti G, Dobbe JGG, Strijkers GJ, Strackee SD, Streekstra GJ. Positioning error of custom 3D-printed surgical guides for the radius: influence of fitting location and guide design. Int J Comput Assist Radiol Surg. 2018;13(4):507–18.CrossRefPubMed
29.
go back to reference Richter M, Duer F, Schilke R, Zech S, Meissner SA, Naef I. Semi-automatic software-based 3D-angular measurement for weight-bearing CT (WBCT) in the foot provides different angles than measurement by hand. Foot Ankle Surg. 2022;28(7):919–27. Richter M, Duer F, Schilke R, Zech S, Meissner SA, Naef I. Semi-automatic software-based 3D-angular measurement for weight-bearing CT (WBCT) in the foot provides different angles than measurement by hand. Foot Ankle Surg. 2022;28(7):919–27.
30.
go back to reference Lamm BM, Paley D, Kurland DB, Matz AL, Herzenberg JE. Multiplier method for predicting adult foot length. J Pediatr Orthop. 2006;26(4):444–8.CrossRefPubMed Lamm BM, Paley D, Kurland DB, Matz AL, Herzenberg JE. Multiplier method for predicting adult foot length. J Pediatr Orthop. 2006;26(4):444–8.CrossRefPubMed
Metadata
Title
Assessment of foot deformities in individuals with cerebral palsy using weight-bearing CT
Authors
R. H. H. Wellenberg
W. Schallig
P. Steenbergen
P. den Tex
J. G. G. Dobbe
G. J. Streekstra
M. M. E. H. Witbreuk
A. I. Buizer
M. Maas
Publication date
30-12-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 7/2023
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-022-04272-6

Other articles of this Issue 7/2023

Skeletal Radiology 7/2023 Go to the issue