Skip to main content
Top
Published in: Skeletal Radiology 8/2017

01-08-2017 | Review Article

Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment

Authors: Jacob C. Mandell, Bharti Khurana, Stacy E. Smith

Published in: Skeletal Radiology | Issue 8/2017

Login to get access

Abstract

A stress fracture is a focal failure of bone induced by the summation of repetitive forces, which overwhelms the normal bone remodeling cycle. This review, the first of two parts, discusses the general principles of stress fractures of the foot and ankle. This includes bone structure, biomechanics of stress applied to bone, bone remodeling, risk factors for stress fracture, and general principles of imaging and treatment of stress fractures. Cortical bone and trabecular bone have a contrasting macrostructure, which leads to differing resistances to externally applied forces. The variable and often confusing imaging appearance of stress fractures of the foot and ankle can largely be attributed to the different imaging appearance of bony remodeling of trabecular and cortical bone. Risk factors for stress fracture can be divided into intrinsic and extrinsic factors. Stress fractures subject to compressive forces are considered low-risk and are treated with activity modification and correction of any modifiable risk factors. Stress fractures subject to tensile forces and/or located in regions of decreased vascularity are considered high risk, with additional treatment options including restricted weight-bearing or surgery.
Literature
1.
go back to reference Stafford SA, Rosenthal DI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR Am J Roentgenol. 1986;147(3):553–6.PubMedCrossRef Stafford SA, Rosenthal DI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR Am J Roentgenol. 1986;147(3):553–6.PubMedCrossRef
2.
3.
go back to reference Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRef Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRef
4.
go back to reference Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16. vii.PubMedCrossRef Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16. vii.PubMedCrossRef
5.
go back to reference Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology. 2016;280(1):21–38.PubMedCrossRef Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology. 2016;280(1):21–38.PubMedCrossRef
8.
go back to reference Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct. 2005;28(4):345–71.CrossRef Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct. 2005;28(4):345–71.CrossRef
9.
go back to reference Burr DB, Akkus O. Bone morphology and organization. In: Basic and applied bone biology. Amsterdam: Elsevier; 2013. p. 3–25. Burr DB, Akkus O. Bone morphology and organization. In: Basic and applied bone biology. Amsterdam: Elsevier; 2013. p. 3–25.
10.
go back to reference Carter DR, Van Der Meulen MC, Beaupré GS. Mechanical factors in bone growth and development. Bone. 1996;18(1 Suppl):5S–10. Carter DR, Van Der Meulen MC, Beaupré GS. Mechanical factors in bone growth and development. Bone. 1996;18(1 Suppl):5S–10.
11.
go back to reference Robling AG, Fuchs RK, Burr DB. Mechanical adaptation. In: Basic and applied bone biology. 2014. p. 175–204. Robling AG, Fuchs RK, Burr DB. Mechanical adaptation. In: Basic and applied bone biology. 2014. p. 175–204.
12.
go back to reference Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol. 1992;159(2):245–52.PubMedCrossRef Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol. 1992;159(2):245–52.PubMedCrossRef
13.
go back to reference Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res. 1988;231:216–21. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res. 1988;231:216–21.
14.
go back to reference Churches AE, Howlett CR, Waldron KJ, Ward GW. The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech. 1979;12(1):35–45.PubMedCrossRef Churches AE, Howlett CR, Waldron KJ, Ward GW. The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech. 1979;12(1):35–45.PubMedCrossRef
15.
go back to reference Allen MR, Burr DB. Bone modeling and remodeling. In: Basic and applied bone biology. Amsterdam: Elsevier; 2014. p. 75–90.CrossRef Allen MR, Burr DB. Bone modeling and remodeling. In: Basic and applied bone biology. Amsterdam: Elsevier; 2014. p. 75–90.CrossRef
16.
go back to reference Burr DB, Milgrom C, Boyd RD, Higgins WL, Robin G, Radin EL. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Joint Surg (Br). 1990;72(3):370–5. Burr DB, Milgrom C, Boyd RD, Higgins WL, Robin G, Radin EL. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Joint Surg (Br). 1990;72(3):370–5.
17.
go back to reference Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Chi HK, et al. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech. 2005;38(9):1909–17.PubMedCrossRef Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Chi HK, et al. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech. 2005;38(9):1909–17.PubMedCrossRef
18.
go back to reference Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism. In: Fogelman I, Gnanasegaran G, van der Wall H, editors. Radionuclide and hybrid bone imaging. Berlin: Springer; 2012. p. 29–57.CrossRef Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism. In: Fogelman I, Gnanasegaran G, van der Wall H, editors. Radionuclide and hybrid bone imaging. Berlin: Springer; 2012. p. 29–57.CrossRef
19.
go back to reference Berger FH, de Jonge MC, Maas M. Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol. 2007;62(1):16–26.PubMedCrossRef Berger FH, de Jonge MC, Maas M. Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol. 2007;62(1):16–26.PubMedCrossRef
21.
go back to reference Shindle MK, Endo Y, Warren RF, Lane JM, Helfet DL, Schwartz EN, et al. Stress fractures about the tibia, foot, and ankle. J Am Acad Orthop Surg. 2012;20(3):167–76.PubMedCrossRef Shindle MK, Endo Y, Warren RF, Lane JM, Helfet DL, Schwartz EN, et al. Stress fractures about the tibia, foot, and ankle. J Am Acad Orthop Surg. 2012;20(3):167–76.PubMedCrossRef
22.
go back to reference Dugan S, Sosa SMA. Chapter 79: stress fractures of the lower limb. In: Essentials of physical medicine and rehabilitation. Amsterdam: Elsevier; 2015. p. 405–10. Dugan S, Sosa SMA. Chapter 79: stress fractures of the lower limb. In: Essentials of physical medicine and rehabilitation. Amsterdam: Elsevier; 2015. p. 405–10.
23.
go back to reference Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case–control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.PubMedPubMedCentralCrossRef Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case–control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.PubMedPubMedCentralCrossRef
24.
go back to reference Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.PubMedCrossRef Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.PubMedCrossRef
25.
go back to reference Ruohola J-P, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.PubMedCrossRef Ruohola J-P, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.PubMedCrossRef
26.
go back to reference Nelson BJ, Arciero RA, Maffulli N. Stress fractures in the female athlete. Sports Med Arthrosc Rev. 2002;10(1):83.CrossRef Nelson BJ, Arciero RA, Maffulli N. Stress fractures in the female athlete. Sports Med Arthrosc Rev. 2002;10(1):83.CrossRef
27.
go back to reference Jacobs JM, Cameron KL, Bojescul JA. Lower extremity stress fractures in the military. Clin Sports Med. 2014;33(4):591–613.PubMedCrossRef Jacobs JM, Cameron KL, Bojescul JA. Lower extremity stress fractures in the military. Clin Sports Med. 2014;33(4):591–613.PubMedCrossRef
29.
go back to reference Daffner RH, Martinez S, Gehweiler JA, Harrelson JM. Stress fractures of the proximal tibia in runners. Radiology. 1982;142(1):63–5.PubMedCrossRef Daffner RH, Martinez S, Gehweiler JA, Harrelson JM. Stress fractures of the proximal tibia in runners. Radiology. 1982;142(1):63–5.PubMedCrossRef
30.
go back to reference Sullivan D, Warren RF, Pavlov H, Kelman G. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92. Sullivan D, Warren RF, Pavlov H, Kelman G. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92.
31.
go back to reference Brent Edwards W, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR. Effects of running speed on a probabilistic stress fracture model. Clin Biomech. 2010;25(4):372–7.CrossRef Brent Edwards W, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR. Effects of running speed on a probabilistic stress fracture model. Clin Biomech. 2010;25(4):372–7.CrossRef
32.
go back to reference Popp KL, Hughes JM, Smock AJ, Novotny SA, Stovitz SD, Koehler SM, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50.PubMedCrossRef Popp KL, Hughes JM, Smock AJ, Novotny SA, Stovitz SD, Koehler SM, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50.PubMedCrossRef
33.
go back to reference Popp KL, McDermott W, Hughes JM, Baxter SA, Stovitz SD, Petit MA. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history. Bone. 2017;94:22–8.PubMedCrossRef Popp KL, McDermott W, Hughes JM, Baxter SA, Stovitz SD, Petit MA. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history. Bone. 2017;94:22–8.PubMedCrossRef
34.
go back to reference Raasch WG, Hergan DJ. Treatment of stress fractures: the fundamentals. Clin Sports Med. 2006;25(1):29–36.PubMedCrossRef Raasch WG, Hergan DJ. Treatment of stress fractures: the fundamentals. Clin Sports Med. 2006;25(1):29–36.PubMedCrossRef
35.
go back to reference Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.PubMed Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.PubMed
36.
go back to reference McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R. 2016;8(3):S113–24.PubMedCrossRef McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R. 2016;8(3):S113–24.PubMedCrossRef
37.
go back to reference Diehl JJ, Best TM, Kaeding CC. Classification and return-to-play considerations for stress fractures. Clin Sports Med. 2006;25(1):17–28.PubMedCrossRef Diehl JJ, Best TM, Kaeding CC. Classification and return-to-play considerations for stress fractures. Clin Sports Med. 2006;25(1):17–28.PubMedCrossRef
38.
go back to reference Niva MH, Sormaala MJ, Kiuru MJ, Haataja R, Ahovuo JA, Pihlajamaki HK. Bone stress injuries of the ankle and foot: an 86-month magnetic resonance imaging-based study of physically active young adults. Am J Sports Med. 2007;35(4):643–9.PubMedCrossRef Niva MH, Sormaala MJ, Kiuru MJ, Haataja R, Ahovuo JA, Pihlajamaki HK. Bone stress injuries of the ankle and foot: an 86-month magnetic resonance imaging-based study of physically active young adults. Am J Sports Med. 2007;35(4):643–9.PubMedCrossRef
39.
go back to reference Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15(1):46–58.PubMedCrossRef Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15(1):46–58.PubMedCrossRef
40.
go back to reference McCormick F, Nwachukwu BU, Provencher MT. Stress fractures in runners. Clin Sports Med. 2010;29(3):399–416.CrossRef McCormick F, Nwachukwu BU, Provencher MT. Stress fractures in runners. Clin Sports Med. 2010;29(3):399–416.CrossRef
41.
go back to reference Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.PubMedCrossRef Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.PubMedCrossRef
42.
go back to reference Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;2015:255–63.CrossRef Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;2015:255–63.CrossRef
43.
go back to reference Kijowski R, Choi J, Mukharjee R, de Smet A. Significance of radiographic abnormalities in patients with tibial stress injuries: correlation with magnetic resonance imaging. Skeletal Radiol. 2007;36(7):633–40.PubMedCrossRef Kijowski R, Choi J, Mukharjee R, de Smet A. Significance of radiographic abnormalities in patients with tibial stress injuries: correlation with magnetic resonance imaging. Skeletal Radiol. 2007;36(7):633–40.PubMedCrossRef
44.
go back to reference Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100(3):519–24.PubMedCrossRef Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100(3):519–24.PubMedCrossRef
45.
go back to reference Hopson CN, Perry DR. Stress fractures of the calcaneus in women marine recruits. Clin Orthop Relat Res. 1977;128:159–62. Hopson CN, Perry DR. Stress fractures of the calcaneus in women marine recruits. Clin Orthop Relat Res. 1977;128:159–62.
46.
go back to reference Coris EE, Lombardo JA. Tarsal navicular stress fractures. Am Fam Physician. 2003;67(1):85–90.PubMed Coris EE, Lombardo JA. Tarsal navicular stress fractures. Am Fam Physician. 2003;67(1):85–90.PubMed
47.
go back to reference Muthukumar T, Butt SH, Cassar-Pullicino VN. Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR imaging. Semin Musculoskelet Radiol. 2005;9(3):210–26.PubMedCrossRef Muthukumar T, Butt SH, Cassar-Pullicino VN. Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR imaging. Semin Musculoskelet Radiol. 2005;9(3):210–26.PubMedCrossRef
48.
49.
go back to reference Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235(2):553–61.PubMedCrossRef Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235(2):553–61.PubMedCrossRef
50.
go back to reference Kiuru MJ, Pihlajamaki HK, Hietanen HJ, Ahovuo JA. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 2002;43(2):207–12.PubMedCrossRef Kiuru MJ, Pihlajamaki HK, Hietanen HJ, Ahovuo JA. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 2002;43(2):207–12.PubMedCrossRef
51.
go back to reference Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.PubMedCrossRef Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.PubMedCrossRef
52.
go back to reference Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedPubMedCentralCrossRef Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedPubMedCentralCrossRef
53.
go back to reference Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD. Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med. 2014;71(6):2166–71.PubMedCrossRef Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD. Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med. 2014;71(6):2166–71.PubMedCrossRef
54.
go back to reference Schweitzer ME, White LM. Does altered biomechanics cause marrow edema? Radiology. 1996;198(3):851–3.PubMedCrossRef Schweitzer ME, White LM. Does altered biomechanics cause marrow edema? Radiology. 1996;198(3):851–3.PubMedCrossRef
55.
go back to reference Bergman AG, Fredericson M, Ho C, Matheson GO. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol. 2004;183(3):635–8.PubMedCrossRef Bergman AG, Fredericson M, Ho C, Matheson GO. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol. 2004;183(3):635–8.PubMedCrossRef
Metadata
Title
Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment
Authors
Jacob C. Mandell
Bharti Khurana
Stacy E. Smith
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 8/2017
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-017-2640-7

Other articles of this Issue 8/2017

Skeletal Radiology 8/2017 Go to the issue

Browser's Notes

Browser’s Notes

Letter to the editor

Letter to the editor