Skip to main content
Top
Published in: Skeletal Radiology 11/2016

01-11-2016 | Scientific Article

Bone imaging findings in genetic and acquired lipodystrophic syndromes: an imaging study of 24 cases

Authors: Stephanie Teboul-Coré, Caroline Rey-Jouvin, Anne Miquel, Camille Vatier, Jacqueline Capeau, Jean-Jacques Robert, Thao Pham, Olivier Lascols, Francis Berenbaum, Jean-Denis Laredo, Corinne Vigouroux, Jérémie Sellam

Published in: Skeletal Radiology | Issue 11/2016

Login to get access

Abstract

Objective

To describe the bone imaging features of lipodystrophies in the largest cohort ever published.

Materials and Methods

We retrospectively examined bone imaging data in 24 patients with lipodystrophic syndromes. Twenty-two had genetic lipodystrophy: 12/22 familial partial lipodystrophy (FPLD) and 10/22 congenital generalized lipodystrophy (CGL), 8 with AGPAT2-linked CGL1 and 2 with seipin-linked CGL2. Two patients had acquired generalized lipodystrophy (AGL) in a context of non-specific autoimmune disorders. Skeletal radiographs were available for all patients, with radiographic follow-up for two. Four patients with CGL1 underwent MRI, and two of them also underwent CT.

Results

Patients with FPLD showed non-specific degenerative radiographic abnormalities. Conversely, CGL patients showed three types of specific radiographic alterations: diffuse osteosclerosis (in 7 patients, 6 with CGL1 and 1 with CGL2), well-defined osteolytic lesions sparing the axial skeleton (7 CGL1 and 1 CGL2), and pseudo-osteopoikilosis (4 CGL1). Pseudo-osteopoikilosis was the sole bone abnormality observed in one of the two patients with AGL. Osteolytic lesions showed homogeneous low signal intensity (SI) on T1-weighted and high SI on T2-weighted MR images. Most of them were asymptomatic, although one osteolytic lesion resulted in a spontaneous knee fracture and secondary osteoarthritis in a patient with CGL1. MRI also showed diffuse fatty bone marrow alterations in patients with CGL1, with intermediate T1 and high T2 SI, notably in radiographically normal areas.

Conclusions

The three types of peculiar imaging bone abnormalities observed in generalized lipodystrophic syndromes (diffuse osteosclerosis, lytic lesions and/or pseudo-osteopoikilosis) may help clinicians with an early diagnosis in pauci-symptomatic patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robbins AL, Savage DB. The genetics of lipid storage and human lipodystrophies. Trends Mol Med. 2015;21(7):433–8.CrossRefPubMed Robbins AL, Savage DB. The genetics of lipid storage and human lipodystrophies. Trends Mol Med. 2015;21(7):433–8.CrossRefPubMed
2.
go back to reference Agarwal AK, Arioglu E, de Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.CrossRefPubMed Agarwal AK, Arioglu E, de Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.CrossRefPubMed
3.
go back to reference Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.CrossRefPubMed Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.CrossRefPubMed
4.
go back to reference Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.CrossRefPubMed Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.CrossRefPubMed
5.
go back to reference Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.PubMed Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.PubMed
6.
7.
go back to reference Savage DB, Semple RK, Clatworthy MR, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.CrossRefPubMed Savage DB, Semple RK, Clatworthy MR, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.CrossRefPubMed
8.
go back to reference Vatier C, Bidault G, Briand N, et al. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep. 2013;13(6):757–67.CrossRefPubMed Vatier C, Bidault G, Briand N, et al. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep. 2013;13(6):757–67.CrossRefPubMed
9.
go back to reference Güell-González JR, De Acosta O, Alavez-Martín E, et al. O. Bone lesions in congenital generalised lipodystrophy. Lancet. 1971;298(7715):104–5.CrossRef Güell-González JR, De Acosta O, Alavez-Martín E, et al. O. Bone lesions in congenital generalised lipodystrophy. Lancet. 1971;298(7715):104–5.CrossRef
10.
go back to reference Fleckenstein JL, Garg A, Bonte FJ, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.CrossRef Fleckenstein JL, Garg A, Bonte FJ, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.CrossRef
11.
go back to reference Kaplan PA, Dussault RG, Buchanan PK, et al. Musculoskeletal case of the day. Congenital lipoatrophic diabetes. AJR Am J Roentgenol. 1996;167(1):252–3.CrossRefPubMed Kaplan PA, Dussault RG, Buchanan PK, et al. Musculoskeletal case of the day. Congenital lipoatrophic diabetes. AJR Am J Roentgenol. 1996;167(1):252–3.CrossRefPubMed
12.
go back to reference Sebrechts C, Garvey WT, Sartoris DJ, et al. Case report 417. Skelet Radiol. 1987;16(4):320–3.CrossRef Sebrechts C, Garvey WT, Sartoris DJ, et al. Case report 417. Skelet Radiol. 1987;16(4):320–3.CrossRef
13.
go back to reference Shinya T, Sato S, Akaki S, et al. Computed tomography findings of congenital generalized lipodystrophy: multiple nodular fatty liver and diffuse sclerosis of bones. Radiat Med. 2007;25(9):484–7.CrossRefPubMed Shinya T, Sato S, Akaki S, et al. Computed tomography findings of congenital generalized lipodystrophy: multiple nodular fatty liver and diffuse sclerosis of bones. Radiat Med. 2007;25(9):484–7.CrossRefPubMed
14.
go back to reference Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr. 1996;85(s413):44–51.CrossRef Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr. 1996;85(s413):44–51.CrossRef
15.
go back to reference Zufferey P, Laredo JD. Serous transformation of marrow of distal femoral epiphysis in a patient with congenital general lipodystrophy and spondylarthritis. Jt Bone Spine Rev Rhum. 2013;80(6):666.CrossRef Zufferey P, Laredo JD. Serous transformation of marrow of distal femoral epiphysis in a patient with congenital general lipodystrophy and spondylarthritis. Jt Bone Spine Rev Rhum. 2013;80(6):666.CrossRef
16.
go back to reference Lodwick GS, Wilson AJ, Farrell C, et al. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134(3):577–83.CrossRefPubMed Lodwick GS, Wilson AJ, Farrell C, et al. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134(3):577–83.CrossRefPubMed
17.
go back to reference Laredo JD. The diagnosis of localized osteolysis-. Ann Radiol (Paris). 1997;40(2):107–20. Laredo JD. The diagnosis of localized osteolysis-. Ann Radiol (Paris). 1997;40(2):107–20.
18.
go back to reference Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan Variety) 1. J Clin Endocrinol Metab. 1999;84(1):170–4.PubMed Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan Variety) 1. J Clin Endocrinol Metab. 1999;84(1):170–4.PubMed
19.
go back to reference Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88(11):5433–7.CrossRefPubMed Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88(11):5433–7.CrossRefPubMed
20.
go back to reference Miranda DM, Wajchenberg BL, Calsolari MR, et al. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin Endocrinol (Oxf). 2009;71(4):512–7.CrossRef Miranda DM, Wajchenberg BL, Calsolari MR, et al. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin Endocrinol (Oxf). 2009;71(4):512–7.CrossRef
21.
22.
go back to reference Gregory JM, Arkader A, Bothari A, et al. Case report: unicameral bone cysts in a young patient with acquired generalized lipodystrophy. Clin Orthop Relat Res. 2010;468(5):1440–6.CrossRefPubMed Gregory JM, Arkader A, Bothari A, et al. Case report: unicameral bone cysts in a young patient with acquired generalized lipodystrophy. Clin Orthop Relat Res. 2010;468(5):1440–6.CrossRefPubMed
23.
go back to reference Vande Berg BC, Malghem J, Lecouvet FE, et al. Distribution of serouslike bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. AJR Am J Roentgenol. 1996;166(3):621–5.CrossRefPubMed Vande Berg BC, Malghem J, Lecouvet FE, et al. Distribution of serouslike bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. AJR Am J Roentgenol. 1996;166(3):621–5.CrossRefPubMed
24.
go back to reference Böhm J. Gelatinous transformation of the bone marrow: the spectrum of underlying diseases. Am J Surg Pathol. 2000;24(1):56–65.CrossRefPubMed Böhm J. Gelatinous transformation of the bone marrow: the spectrum of underlying diseases. Am J Surg Pathol. 2000;24(1):56–65.CrossRefPubMed
25.
go back to reference Wilson DE, Chan I-F, Stevenson KB, et al. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance*. J Clin Endocrinol Metab. 1983;57(3):517–23.CrossRefPubMed Wilson DE, Chan I-F, Stevenson KB, et al. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance*. J Clin Endocrinol Metab. 1983;57(3):517–23.CrossRefPubMed
26.
go back to reference Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.CrossRefPubMed Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.CrossRefPubMed
27.
go back to reference Haque WA, Shimomura I, Matsuzawa Y, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.CrossRefPubMed Haque WA, Shimomura I, Matsuzawa Y, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.CrossRefPubMed
28.
go back to reference Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.CrossRefPubMedPubMedCentral Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.CrossRefPubMedPubMedCentral
29.
go back to reference Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.CrossRefPubMed Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.CrossRefPubMed
30.
go back to reference Caron M, Auclair M, Donadille B, et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 2007;14(10):1759–67.CrossRefPubMed Caron M, Auclair M, Donadille B, et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 2007;14(10):1759–67.CrossRefPubMed
Metadata
Title
Bone imaging findings in genetic and acquired lipodystrophic syndromes: an imaging study of 24 cases
Authors
Stephanie Teboul-Coré
Caroline Rey-Jouvin
Anne Miquel
Camille Vatier
Jacqueline Capeau
Jean-Jacques Robert
Thao Pham
Olivier Lascols
Francis Berenbaum
Jean-Denis Laredo
Corinne Vigouroux
Jérémie Sellam
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 11/2016
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-016-2457-9

Other articles of this Issue 11/2016

Skeletal Radiology 11/2016 Go to the issue

Letter to the editor

From a pathologist