Skip to main content
Top
Published in: Skeletal Radiology 12/2010

01-12-2010 | Scientific Article

Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries

Authors: Gokhan Gokalp, Nalan Yildirim, Zeynep Yazici, Ilker Ercan

Published in: Skeletal Radiology | Issue 12/2010

Login to get access

Abstract

The objective of this study was to prospectively quantify the fatty degeneration of supraspinatus (SSP) muscle due to SSP tendon injuries by using chemical-shift magnetic resonance imaging (CS-MRI). Forty-one patients with suspected rotator cuff tear or impingement examined with MR arthrography were included in the study. The following images were obtained after injection of diluted gadolinium chelate into glenohumeral joint: fat-saturated T1-weighted spin echo in the coronal, axial, and sagittal-oblique plane; fat-saturated T2-weighted and intermediate-weighted fast spin-echo in the coronal-oblique plane; and T1-weighted spin echo in the sagittal-oblique plane. CS-MRI was performed in the coronal plane using a double-echo fast low-angle shot (FLASH) sequence. SSP tendon changes were classified as normal, tendinosis, and partial and complete tear according to MR arthrography findings. Fatty degeneration was quantified after measurement of signal intensity values within the region of interest (ROI) placed over SSP muscle. Signal intensity (SI) suppression ratio and SI index were calculated with the values obtained. Degrees of fatty degeneration depicted in normal subjects and subjects with rotator cuff injuries were compared. Median (min:max) was used as descriptive values. SI suppression ratio was −3.5% (−15.5:3.03) in normal subjects, whereas it was −13.5% (−28.55:−6.60), −30.7% (−41.5:−20.35), and −43.75% (−62:−24.90) in tendinosis, partial and complete tears, respectively. SI index was 0.75% (−6:11.5) in normal subjects. It was 10% (4.50:27), 26.5% (19.15:35.5), and 41% (23.9:57) in tendinosis, partial and complete tears, respectively. The increase in degree of fatty degeneration parallels the seriousness of tendon pathology. CS-MRI is a useful method for grading fat accumulation within SSP muscle.
Literature
1.
go back to reference Pfirrmann CW, Schmid MR, Zanetti M, Jost B, Gerber C, Hodler J. Assessment of fat content in supraspinatus muscle with proton MR spectroscopy in asymptomatic volunteers and patients with supraspinatus tendon lesions. Radiology. 2004;232:709–15.CrossRefPubMed Pfirrmann CW, Schmid MR, Zanetti M, Jost B, Gerber C, Hodler J. Assessment of fat content in supraspinatus muscle with proton MR spectroscopy in asymptomatic volunteers and patients with supraspinatus tendon lesions. Radiology. 2004;232:709–15.CrossRefPubMed
2.
go back to reference Strobel K, Hodler J, Meyer DC, Pfirrmann CW, Pirkl C, Zanetti M. Fatty atrophy of supraspinatus and infraspinatus muscles: accuracy of US. Radiology. 2005;237:584–9.CrossRefPubMed Strobel K, Hodler J, Meyer DC, Pfirrmann CW, Pirkl C, Zanetti M. Fatty atrophy of supraspinatus and infraspinatus muscles: accuracy of US. Radiology. 2005;237:584–9.CrossRefPubMed
3.
go back to reference Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35:719–28.CrossRefPubMed Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35:719–28.CrossRefPubMed
4.
go back to reference Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg. 2003;12:550–4.CrossRefPubMed Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg. 2003;12:550–4.CrossRefPubMed
5.
go back to reference Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;78–83. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;78–83.
6.
go back to reference Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty infiltration of disrupted rotator cuff muscles. Rev Rhum Engl Ed. 1995;62:415–22.PubMed Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty infiltration of disrupted rotator cuff muscles. Rev Rhum Engl Ed. 1995;62:415–22.PubMed
7.
go back to reference Khoury V, Cardinal E, Brassard P. Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. AJR. 2008;190:1105–11.CrossRefPubMed Khoury V, Cardinal E, Brassard P. Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. AJR. 2008;190:1105–11.CrossRefPubMed
8.
go back to reference Thomazeau H, Rolland Y, Lucas C, Duval JM. Atrophy of the supraspinatus belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–8.CrossRefPubMed Thomazeau H, Rolland Y, Lucas C, Duval JM. Atrophy of the supraspinatus belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–8.CrossRefPubMed
9.
go back to reference Kenn W, Böhm D, Gohlke F, Hümmer C, Köstler H, Hahn D. 2D SPLASH: a new method to determine the fatty infiltration of the rotator cuff muscles. Eur Radiol. 2004;14:2331–6.CrossRefPubMed Kenn W, Böhm D, Gohlke F, Hümmer C, Köstler H, Hahn D. 2D SPLASH: a new method to determine the fatty infiltration of the rotator cuff muscles. Eur Radiol. 2004;14:2331–6.CrossRefPubMed
10.
go back to reference Nägele T, Klose U, Grodd W, et al. Three-dimensional chemical shift-selective MRI of a ruptured intracranial dermoid cyst. Neuroradiology. 1996;38:572–4.CrossRefPubMed Nägele T, Klose U, Grodd W, et al. Three-dimensional chemical shift-selective MRI of a ruptured intracranial dermoid cyst. Neuroradiology. 1996;38:572–4.CrossRefPubMed
11.
go back to reference Haider MA, Ghai S, Jhaveri K, Lockwood G. Chemical shift MR imaging of hyperattenuating (>10 HU) adrenal masses: does it still have a role? Radiology. 2004;231:711–6.CrossRefPubMed Haider MA, Ghai S, Jhaveri K, Lockwood G. Chemical shift MR imaging of hyperattenuating (>10 HU) adrenal masses: does it still have a role? Radiology. 2004;231:711–6.CrossRefPubMed
12.
go back to reference Namimoto T, Yamashita Y, Mitsuzaki K, et al. Adrenal masses: quantification of fat content with double-echo chemical shift in-phase and opposed-phase FLASH MR images for differentiation of adrenal adenomas. Radiology. 2001;218:642–6.PubMed Namimoto T, Yamashita Y, Mitsuzaki K, et al. Adrenal masses: quantification of fat content with double-echo chemical shift in-phase and opposed-phase FLASH MR images for differentiation of adrenal adenomas. Radiology. 2001;218:642–6.PubMed
13.
go back to reference Fujiyoshi F, Nakajo M, Fukukura Y, Tsuchimochi S. Characterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluation. AJR. 2003;180:1649–57.PubMed Fujiyoshi F, Nakajo M, Fukukura Y, Tsuchimochi S. Characterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluation. AJR. 2003;180:1649–57.PubMed
14.
go back to reference Bilbey JH, McLoughlin RF, Kurkjian PS, et al. MR imaging of adrenal masses: value of chemical-shift imaging for distinguishing adenomas from other tumors. AJR. 1995;164:637–42.PubMed Bilbey JH, McLoughlin RF, Kurkjian PS, et al. MR imaging of adrenal masses: value of chemical-shift imaging for distinguishing adenomas from other tumors. AJR. 1995;164:637–42.PubMed
15.
go back to reference Savci G, Yazici Z, Sahin N, Akgöz S, Tuncel E. Value of chemical shift subtraction MRI in characterization of adrenal masses. AJR. 2006;186:130–5.CrossRefPubMed Savci G, Yazici Z, Sahin N, Akgöz S, Tuncel E. Value of chemical shift subtraction MRI in characterization of adrenal masses. AJR. 2006;186:130–5.CrossRefPubMed
16.
go back to reference Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM. Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology. 1992;185:345–51.PubMed Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM. Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology. 1992;185:345–51.PubMed
17.
go back to reference Mayo-Smith WW, Lee MJ, McNicholas MM, Hahn PF, Boland GW, Saini S. Characterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer performance versus quantitative measures. AJR. 1995;165:91–5.PubMed Mayo-Smith WW, Lee MJ, McNicholas MM, Hahn PF, Boland GW, Saini S. Characterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer performance versus quantitative measures. AJR. 1995;165:91–5.PubMed
18.
go back to reference Heinz-Peer G, Hönigschnabl S, Schneider B, Niederle B, Kaserer K, Lechner G. Characterization of adrenal masses using MR imaging with histopathologic correlation. AJR. 1999;173:15–22.PubMed Heinz-Peer G, Hönigschnabl S, Schneider B, Niederle B, Kaserer K, Lechner G. Characterization of adrenal masses using MR imaging with histopathologic correlation. AJR. 1999;173:15–22.PubMed
19.
go back to reference Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlais F. Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res. 1997;344:275–83.CrossRefPubMed Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlais F. Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res. 1997;344:275–83.CrossRefPubMed
20.
go back to reference Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Invest Radiol. 1998;33:163–70.CrossRefPubMed Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Invest Radiol. 1998;33:163–70.CrossRefPubMed
21.
go back to reference Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop. 1994;304:78–83.PubMed Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop. 1994;304:78–83.PubMed
22.
go back to reference Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed
23.
go back to reference Bjorkenheim JM. Structure and function of the rabbit’s supraspinatus muscle after resection of its tendon. Acta Orthop Scand. 1989;60:461–3.CrossRefPubMed Bjorkenheim JM. Structure and function of the rabbit’s supraspinatus muscle after resection of its tendon. Acta Orthop Scand. 1989;60:461–3.CrossRefPubMed
24.
go back to reference Kullmer K, Sievers KW, Reimers CD, Rompe JD, Muller-Felber W, Nagele M, et al. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation. Arch Orthop Trauma Surg. 1998;117:228–34.CrossRefPubMed Kullmer K, Sievers KW, Reimers CD, Rompe JD, Muller-Felber W, Nagele M, et al. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation. Arch Orthop Trauma Surg. 1998;117:228–34.CrossRefPubMed
25.
go back to reference Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605.CrossRefPubMed Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605.CrossRefPubMed
26.
go back to reference Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.PubMed Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.PubMed
27.
go back to reference Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37:484–93.CrossRefPubMed Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37:484–93.CrossRefPubMed
28.
go back to reference Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med. 1993;29:158–67.CrossRefPubMed Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med. 1993;29:158–67.CrossRefPubMed
29.
go back to reference Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276:977–89. Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276:977–89.
30.
go back to reference Kreis R, Boesch C. Spatially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Magn Reson B. 1996;113:103–18.CrossRefPubMed Kreis R, Boesch C. Spatially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Magn Reson B. 1996;113:103–18.CrossRefPubMed
31.
32.
go back to reference Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F. Atrophy of the supraspinatus belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–8.CrossRefPubMed Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F. Atrophy of the supraspinatus belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–8.CrossRefPubMed
33.
go back to reference Nakagaki K, Ozaki J, Tomita Y, Tamai S. Function of supraspinatus muscle with torn cuff evaluated by magnetic resonance imaging. Clin Orthop. 1995;318:144–51.PubMed Nakagaki K, Ozaki J, Tomita Y, Tamai S. Function of supraspinatus muscle with torn cuff evaluated by magnetic resonance imaging. Clin Orthop. 1995;318:144–51.PubMed
34.
go back to reference Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Invest Radiol. 1998;33:163–70.CrossRefPubMed Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Invest Radiol. 1998;33:163–70.CrossRefPubMed
35.
go back to reference Ashry R, Schweitzer ME, Cunningham P, Cohen J, Babb J, Cantos A. Muscle atrophy as a consequence of rotator cuff tears: should we compare the muscles of the rotator cuff with those of the deltoid? Skeletal Radiol. 2007;36:841–5.CrossRefPubMed Ashry R, Schweitzer ME, Cunningham P, Cohen J, Babb J, Cantos A. Muscle atrophy as a consequence of rotator cuff tears: should we compare the muscles of the rotator cuff with those of the deltoid? Skeletal Radiol. 2007;36:841–5.CrossRefPubMed
36.
go back to reference Nakagaki K, Ozaki J, Tomita Y, Tamai S. Fatty degeneration in the supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg. 1996;5:194–200.CrossRefPubMed Nakagaki K, Ozaki J, Tomita Y, Tamai S. Fatty degeneration in the supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg. 1996;5:194–200.CrossRefPubMed
Metadata
Title
Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries
Authors
Gokhan Gokalp
Nalan Yildirim
Zeynep Yazici
Ilker Ercan
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Skeletal Radiology / Issue 12/2010
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-010-0927-z

Other articles of this Issue 12/2010

Skeletal Radiology 12/2010 Go to the issue