Skip to main content
Top
Published in: Skeletal Radiology 5/2009

01-05-2009 | Scientific Article

Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions

Authors: Rong Tian, Minggang Su, Ye Tian, Fanglan Li, Lin Li, Anren Kuang, Jiancheng Zeng

Published in: Skeletal Radiology | Issue 5/2009

Login to get access

Abstract

Purpose

The purpose of the present study was to evaluate whether 2-fluoro[fluorine-18]-2-deoxy-d-glucose (F-18 FDG) positron emission tomography (PET) could differentiate malignant and benign bone lesions and whether obtaining delayed F-18 FDG PET images could improve the accuracy of the technique.

Methods

In a prospective study, 67 patients with bone lesions detected by computed tomography (CT) or magnetic resonance imaging were included. Whole body PET/CT imaging was performed at 1 h (early) after the F-18 FDG injection and delayed imaging at 2 h post injection was performed only in the abnormal region. Semiquantitative analysis was performed using maximum standardized uptake value (SUVmax), obtained from early and delayed images (SUVmaxE and SUVmaxD, respectively). The retention index (RI) was calculated according to the equation: RI = (SUVmaxD − SUVmaxE) × 100/SUVmaxE. Histopathology of surgical specimens and follow-up data were used as reference criteria. The SUVmaxE and RI were compared between benign and malignant lesions.

Results

The final diagnoses revealed 53 malignant bone lesions in 37 patients and 45 benign lesions in 30 patients. There were statistically significant differences in the SUVmaxE between the malignant and benign lesions (P = 0.03). The mean SUVmaxE was 6.8 ± 4.7 for malignant lesions and 4.5 ± 3.3 for benign lesions. However, a considerable overlap in the SUVmaxE was observed between some benign and malignant tumors. With a cutoff value of 2.5 for the SUVmaxE, the sensitivity, specificity, and accuracy were 96.0%, 44.0%, and 72.4%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 67.1% and 90.9%, respectively. There were significant differences in the RI between the malignant and benign lesions (P = 0.004). But there was overlap between the two groups. The mean RI was 7 ± 11 for the benign lesions and 18 ± 11 for the malignant lesions. When an RI of 10 was used as the cutoff point, the sensitivity, specificity, and accuracy were 90.6%, 76.0%, and 83.7.0%, respectively. The PPV and NPV were 81.4% and 87.1%, respectively.

Conclusions

The results of this study indicate that dual-time point F-18 FDG PET may provide more help in the differentiation of malignant tumors from benign ones.
Literature
1.
go back to reference Erlemann R. MRI is highly sensitive for the detection of bone marrow abnormalities, cortical destruction or soft tissue tumors adjacent or infiltrating neighboring bones. Eur J Radiol 2006; 58(1): 48–67.PubMedCrossRef Erlemann R. MRI is highly sensitive for the detection of bone marrow abnormalities, cortical destruction or soft tissue tumors adjacent or infiltrating neighboring bones. Eur J Radiol 2006; 58(1): 48–67.PubMedCrossRef
2.
go back to reference Hillner BE, Siegel BA, Shields AF, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the National Oncologic PET Registry. J Nucl Med 2008; 49(12): 1928–1935.PubMedCrossRef Hillner BE, Siegel BA, Shields AF, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the National Oncologic PET Registry. J Nucl Med 2008; 49(12): 1928–1935.PubMedCrossRef
3.
go back to reference Kim SK, Allen-Auerbach M, Goldin J, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med 2007; 48(2): 214–220.PubMed Kim SK, Allen-Auerbach M, Goldin J, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med 2007; 48(2): 214–220.PubMed
4.
go back to reference Dimitrakopoulou-Strauss ASL, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002; 43(4): 510–518.PubMed Dimitrakopoulou-Strauss ASL, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002; 43(4): 510–518.PubMed
5.
go back to reference Kern KA, Brunetti A, Norton JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 1988; 29(2): 181–186.PubMed Kern KA, Brunetti A, Norton JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 1988; 29(2): 181–186.PubMed
6.
go back to reference Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991; 32(8): 1508–1512.PubMed Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991; 32(8): 1508–1512.PubMed
7.
go back to reference Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d- glucose. Radiology 1992; 182(1): 185–194.PubMed Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d- glucose. Radiology 1992; 182(1): 185–194.PubMed
8.
go back to reference Dehdashti FSB, Griffeth LK, Fusselman MJ, Trask DD, McGuire AH. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18]fluoro-2-deoxy-d-glucose. Radiology 1996; 200(1): 243–247.PubMed Dehdashti FSB, Griffeth LK, Fusselman MJ, Trask DD, McGuire AH. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18]fluoro-2-deoxy-d-glucose. Radiology 1996; 200(1): 243–247.PubMed
9.
go back to reference Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219(3): 774–777.PubMed Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219(3): 774–777.PubMed
10.
go back to reference Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998; 39(5): 810–815.PubMed Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998; 39(5): 810–815.PubMed
11.
go back to reference Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000; 41(10): 1695–1701.PubMed Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000; 41(10): 1695–1701.PubMed
12.
go back to reference Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001; 42(9): 1412–1417.PubMed Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001; 42(9): 1412–1417.PubMed
13.
go back to reference Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions. Clinical radiology 2008; 63(7): 756–764.PubMedCrossRef Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions. Clinical radiology 2008; 63(7): 756–764.PubMedCrossRef
14.
go back to reference Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43(7): 871–875.PubMed Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43(7): 871–875.PubMed
15.
go back to reference Ma S-Y, See L-C, Lai C-H, et al. Delayed 18F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003; 44(11): 1775–1783.PubMed Ma S-Y, See L-C, Lai C-H, et al. Delayed 18F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003; 44(11): 1775–1783.PubMed
16.
go back to reference Mavi A, Urhan M, Yu JQ, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 2006; 47(9): 1440–1446.PubMed Mavi A, Urhan M, Yu JQ, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 2006; 47(9): 1440–1446.PubMed
17.
go back to reference Xiu Y, Bhutani C, Dhurairaj T, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med 2007; 32(2): 101–105.PubMedCrossRef Xiu Y, Bhutani C, Dhurairaj T, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med 2007; 32(2): 101–105.PubMedCrossRef
18.
go back to reference Sahlmann CO, Siefker U, Lehmann K, Meller J. Dual time point 2-[18F]fluoro-2′-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun 2004; 25(8): 819–823.PubMedCrossRef Sahlmann CO, Siefker U, Lehmann K, Meller J. Dual time point 2-[18F]fluoro-2′-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun 2004; 25(8): 819–823.PubMedCrossRef
19.
go back to reference Daisuke U, Shinya S, Masanori I, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2005; 238(11): 264–271. Daisuke U, Shinya S, Masanori I, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2005; 238(11): 264–271.
20.
go back to reference Shin DS, Shon OJ, Han DS, Choi JH, Chun KA, Cho IH. The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumors. Ann Nucl Med 2008; 22(7): 603–609.PubMedCrossRef Shin DS, Shon OJ, Han DS, Choi JH, Chun KA, Cho IH. The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumors. Ann Nucl Med 2008; 22(7): 603–609.PubMedCrossRef
21.
go back to reference Aoki J, Endo K, Watanabe H, Shinozaki T, Yanagawa T, Ahmed AR, et al. FDG-PET for evaluating musculoskeletal tumors. J Orthop Sci 2003; 8(3): 435–441.PubMedCrossRef Aoki J, Endo K, Watanabe H, Shinozaki T, Yanagawa T, Ahmed AR, et al. FDG-PET for evaluating musculoskeletal tumors. J Orthop Sci 2003; 8(3): 435–441.PubMedCrossRef
22.
go back to reference Feldman F, Heertum RV, Manus C. 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 2003; 32: 201–208.PubMed Feldman F, Heertum RV, Manus C. 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 2003; 32: 201–208.PubMed
23.
go back to reference Meszaros K, Lang CH, Bagby GJ, Spitzer JJ. Contribution of different organs to increased glucose consumption after endotoxin administration. J Biol Chem 1987; 262(23): 10965–10970.PubMed Meszaros K, Lang CH, Bagby GJ, Spitzer JJ. Contribution of different organs to increased glucose consumption after endotoxin administration. J Biol Chem 1987; 262(23): 10965–10970.PubMed
24.
go back to reference Strobel K, Bode B, Lardinois D, Exner U. PET-positive fibrous dysplasia—a potentially misleading incidental finding in a patient with intimal sarcoma of the pulmonary artery. Skeletal Radiology 2007; 36: 24–28.CrossRef Strobel K, Bode B, Lardinois D, Exner U. PET-positive fibrous dysplasia—a potentially misleading incidental finding in a patient with intimal sarcoma of the pulmonary artery. Skeletal Radiology 2007; 36: 24–28.CrossRef
25.
go back to reference Conill C, Setoain X, Colomo L, et al. Diagnostic efficacy of bone scintigraphy, magnetic resonance imaging, and positron emission tomography in bone metastases of myxoid liposarcoma. J Magn Reson Imaging 2008; 27(3): 625–628.PubMedCrossRef Conill C, Setoain X, Colomo L, et al. Diagnostic efficacy of bone scintigraphy, magnetic resonance imaging, and positron emission tomography in bone metastases of myxoid liposarcoma. J Magn Reson Imaging 2008; 27(3): 625–628.PubMedCrossRef
26.
go back to reference Goo JM, Im J-G, Do K-H, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 2000; 216(1): 117–121.PubMed Goo JM, Im J-G, Do K-H, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 2000; 216(1): 117–121.PubMed
27.
go back to reference Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET: comparison of findings in patients with and without a history of prior malignancy. Chest 1996; 109(4): 982–988.PubMedCrossRef Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET: comparison of findings in patients with and without a history of prior malignancy. Chest 1996; 109(4): 982–988.PubMedCrossRef
28.
go back to reference Bredella MA, Essary B, Torriani M, Ouellette HA, Palmer WE. Use of FDG-PET in differentiating benign from malignant compression fractures. Skeletal Radiol 2008; 37(5): 405–413.PubMedCrossRef Bredella MA, Essary B, Torriani M, Ouellette HA, Palmer WE. Use of FDG-PET in differentiating benign from malignant compression fractures. Skeletal Radiol 2008; 37(5): 405–413.PubMedCrossRef
29.
go back to reference Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26(10): 1345–1348.PubMedCrossRef Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26(10): 1345–1348.PubMedCrossRef
30.
go back to reference Yoshihiro N, Yuka Y, Naruhide K, Shinya I, Yasuhiro S, Ohkawa M. Dual-time-point FDG-PET for evaluation of lymph node metastasis in patients with non-small-cell lung cancer. Ann Nucl Med 2008; 22: 245–250.CrossRef Yoshihiro N, Yuka Y, Naruhide K, Shinya I, Yasuhiro S, Ohkawa M. Dual-time-point FDG-PET for evaluation of lymph node metastasis in patients with non-small-cell lung cancer. Ann Nucl Med 2008; 22: 245–250.CrossRef
31.
go back to reference Hamada K, Tomita Y, Ueda T, et al. Evaluation of delayed 18F-FDG PET in differential diagnosis for malignant soft-tissue tumors. Ann Nucl Med 2006; 20(10): 671–675.PubMedCrossRef Hamada K, Tomita Y, Ueda T, et al. Evaluation of delayed 18F-FDG PET in differential diagnosis for malignant soft-tissue tumors. Ann Nucl Med 2006; 20(10): 671–675.PubMedCrossRef
32.
go back to reference Strobel K, Exner UE, Stumpe KD, Hany TF, Bode B, Mende K, et al. The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 2008; 35(11): 2000–2008.PubMedCrossRef Strobel K, Exner UE, Stumpe KD, Hany TF, Bode B, Mende K, et al. The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 2008; 35(11): 2000–2008.PubMedCrossRef
Metadata
Title
Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions
Authors
Rong Tian
Minggang Su
Ye Tian
Fanglan Li
Lin Li
Anren Kuang
Jiancheng Zeng
Publication date
01-05-2009
Publisher
Springer-Verlag
Published in
Skeletal Radiology / Issue 5/2009
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-008-0643-0

Other articles of this Issue 5/2009

Skeletal Radiology 5/2009 Go to the issue